【題目】在直角坐標系xOy中,曲線C1的參數(shù)方程為 (t為參數(shù),a>0).在以坐標原點為極點,x軸正半軸為極軸的極坐標系中,曲線C2:ρ=4cosθ.
(Ⅰ)說明C1是哪一種曲線,并將C1的方程化為極坐標方程;
(Ⅱ)直線C3的極坐標方程為θ=α0 , 其中α0滿足tanα0=2,若曲線C1與C2的公共點都在C3上,求a.

【答案】解:(Ⅰ)由 ,得 ,兩式平方相加得,x2+(y﹣1)2=a2

∴C1為以(0,1)為圓心,以a為半徑的圓.

化為一般式:x2+y2﹣2y+1﹣a2=0.①

由x2+y22,y=ρsinθ,得ρ2﹣2ρsinθ+1﹣a2=0;

(Ⅱ)C2:ρ=4cosθ,兩邊同時乘ρ得ρ2=4ρcosθ,

∴x2+y2=4x,②

即(x﹣2)2+y2=4.

由C3:θ=α0,其中α0滿足tanα0=2,得y=2x,

∵曲線C1與C2的公共點都在C3上,

∴y=2x為圓C1與C2的公共弦所在直線方程,

①﹣②得:4x﹣2y+1﹣a2=0,即為C3 ,

∴1﹣a2=0,

∴a=1(a>0)


【解析】(Ⅰ)把曲線C1的參數(shù)方程變形,然后兩邊平方作和即可得到普通方程,可知曲線C1是圓,化為一般式,結(jié)合x2+y22,y=ρsinθ化為極坐標方程;(Ⅱ)化曲線C2、C3的極坐標方程為直角坐標方程,由條件可知y=x為圓C1與C2的公共弦所在直線方程,把C1與C2的方程作差,結(jié)合公共弦所在直線方程為y=2x可得1﹣a2=0,則a值可求.
【考點精析】利用參數(shù)方程的定義對題目進行判斷即可得到答案,需要熟知在平面直角坐標系中,如果曲線上任意一點的坐標都是某個變數(shù)的函數(shù)并且對于的每一個允許值,由這個方程所確定的點都在這條曲線上,那么這個方程就叫做這條曲線的參數(shù)方程.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓C1與雙曲線C2有相同的左右焦點F1、F2 , P為橢圓C1與雙曲線C2在第一象限內(nèi)的一個公共點,設(shè)橢圓C1與雙曲線C2的離心率為e1 , e2 , 且 = ,若∠F1PF2= ,則雙曲線C2的漸近線方程為(
A.x±y=0
B.x± y=0
C.x± y=0
D.x±2y=0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線y2=2x和圓x2+y2﹣x=0,傾斜角為 的直線l經(jīng)過拋物線的焦點,若直線l與拋物線和圓的交點自上而下依次為A,B,C,D,則|AB|+|CD|=

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】定義“正對數(shù)”:ln+x= ,現(xiàn)有四個命題: ①若a>0,b>0,則ln+(ab)=bln+a
②若a>0,b>0,則ln+(ab)=ln+a+ln+b
③若a>0,b>0,則 b
④若a>0,b>0,則ln+(a+b)≤ln+a+ln+b+ln2
其中的真命題有: . (寫出所有真命題的編號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖是由圓柱與圓錐組合而成的幾何體的三視圖,則該幾何體的表面積為(
A.20π
B.24π
C.28π
D.32π

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】解答題
(Ⅰ)討論函數(shù)f(x)= ex的單調(diào)性,并證明當x>0時,(x﹣2)ex+x+2>0;
(Ⅱ)證明:當a∈[0,1)時,函數(shù)g(x)= (x>0)有最小值.設(shè)g(x)的最小值為h(a),求函數(shù)h(a)的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】《數(shù)學九章》中對已知三角形三邊長求三角形的面積的求法填補了我國傳統(tǒng)數(shù)學的一個空白,與著名的海倫公式完全等價,由此可以看出我國古代已具有很高的數(shù)學水平,其求法是:“以小斜冪并大斜冪減中斜冪,余半之,自乘于上,以小斜冪乘大斜冪減上,余四約之,為實.一為從隔,開平方得積.”若把以上這段文字寫成公式,即S= .現(xiàn)有周長為4+ 的△ABC滿足sinA:sinB:sinC=( ﹣1): : ( +1),試用以上給出的公式求得△ABC的面積為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】學校為了了解高三學生每天自主學習中國古典文學的時間,隨機抽取了高三男生和女生各50名進行問卷調(diào)查,其中每天自主學習中國古典文學的時間超過3小時的學生稱為“古文迷”,否則為“非古文迷”,調(diào)查結(jié)果如表:

古文迷

非古文迷

合計

男生

26

24

50

女生

30

20

50

合計

56

44

100

(Ⅰ)根據(jù)表中數(shù)據(jù)能否判斷有60%的把握認為“古文迷”與性別有關(guān)?
(Ⅱ)現(xiàn)從調(diào)查的女生中按分層抽樣的方法抽出5人進行調(diào)查,求所抽取的5人中“古文迷”和“非古文迷”的人數(shù);
(Ⅲ)現(xiàn)從(Ⅱ)中所抽取的5人中再隨機抽取3人進行調(diào)查,記這3人中“古文迷”的人數(shù)為ξ,求隨機變量ξ的分布列與數(shù)學期望.
參考公式:K2= ,其中n=a+b+c+d.
參考數(shù)據(jù):

P(K2≥k0

0.50

0.40

0.25

0.05

0.025

0.010

k0

0.455

0.708

1.321

3.841

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】過曲線C1 =1(a>0,b>0)的左焦點F1作曲線C2:x2+y2=a2的切線,設(shè)切點為M,延長F1M交曲線C3:y2=2px(p>0)于點N,其中曲線C1與C3有一個共同的焦點,若|MF1|=|MN|,則曲線C1的離心率為(
A.
B. ﹣1
C. +1
D.

查看答案和解析>>

同步練習冊答案