【題目】若一個(gè)三角形的邊長(zhǎng)與面積都是整數(shù),則稱為“海倫三角形”;三邊長(zhǎng)互質(zhì)的海倫三角形,稱為“本原海倫三角形”;邊長(zhǎng)都不是3的倍數(shù)的本原海倫三角形,稱為“奇異三角形”.
(1)求奇異三角形的最小邊長(zhǎng)的最小值;
(2)求證:等腰的奇異三角形有無(wú)數(shù)個(gè);
(3)問:非等腰的奇異三角形有多少個(gè)?
【答案】(1)5;(2)見解析;(3)見解析
【解析】
(1)設(shè)、、()是一個(gè)奇異三角形的三邊長(zhǎng).則由海海倫公式知
. ①
因?yàn)?/span>,所以,、、中至少有一個(gè)為奇數(shù).如果、、中有奇數(shù)個(gè)奇數(shù),則、、、都是奇數(shù),與式①矛盾.
因此,、、中恰有兩個(gè)為奇數(shù).
若,由,知.
因?yàn)?/span>,所以,.
此時(shí),、、中有奇數(shù)個(gè)奇數(shù),矛盾.
若,由,知.
因?yàn)?/span>,所以,或.
當(dāng)時(shí),,,因此,.
但,矛盾.
當(dāng)時(shí),、一奇一偶.
故、、中恰有一個(gè)奇數(shù),矛盾.
若,則、都是奇數(shù).
由,知.
又,于是,或.
當(dāng)時(shí),,,所以,為偶數(shù).
令.則,.
但,于是,,,故,矛盾.
當(dāng)時(shí),,所以,.令,則.
若,則,與奇異三角形矛盾.若,則,也與奇異三角形矛盾.
綜上所述,.
又(5,5,8)是奇異三角形,故奇異三角形的最小邊長(zhǎng)的最小值為5.
(2)若、,,、一奇一偶,則是奇異三角形.
事實(shí)上,為整數(shù).
其次,因、一奇一偶,則.
故.
最后,因?yàn)?/span>,且,故、中恰有一個(gè)是3的倍數(shù),所以,、都不是3的倍數(shù).
特別地,取,.則是奇異三角形.
類似知,若、,,,,、一奇一偶,則是奇異三角形.
特別地,取,,則是奇異三角形.
(3)非等腰的奇異三角形亦有無(wú)數(shù)個(gè).
取,令,,.
因?yàn)?/span>為奇數(shù),所以,、、為整數(shù),且顯然有.
又因?yàn)?/span>不是3的倍數(shù),所以,、、都不是3的倍數(shù).
最后,由于,于是,、都不是5的倍數(shù),進(jìn)而,由,知.
經(jīng)計(jì)算可得為整數(shù).
所以,(、、)是非等腰奇異三角形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,橢圓的一個(gè)頂點(diǎn)為,右焦點(diǎn)到直線的距離為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若過作兩條互相垂直的直線,且交橢圓于、兩點(diǎn),交橢圓于、兩點(diǎn),求四邊形的面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】
已知雙曲線設(shè)過點(diǎn)的直線l的方向向量
(1) 當(dāng)直線l與雙曲線C的一條漸近線m平行時(shí),求直線l的方程及l與m的距離;
(2) 證明:當(dāng)>時(shí),在雙曲線C的右支上不存在點(diǎn)Q,使之到直線l的距離為.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了考察冰川的融化狀況,一支科考隊(duì)在某冰川山上相距8km的A、B兩點(diǎn)各建一個(gè)考察基地,視冰川面為平面形,以過A、B兩點(diǎn)的直線為x軸,線段AB的垂直平分線為y軸建立平面直角坐標(biāo)系(圖4).考察范圍到A、B兩點(diǎn)的距離之和不超過10km的區(qū)域.
(I)求考察區(qū)域邊界曲線的方程:
(II)如圖4所示,設(shè)線段是冰川的部分邊界線(不考慮其他邊界),當(dāng)冰川融化時(shí),邊界線沿與其垂直的方向朝考察區(qū)域平行移動(dòng),第一年移動(dòng)0.2km,以后每年移動(dòng)的距離為前一年的2倍.問:經(jīng)過多長(zhǎng)時(shí)間,點(diǎn)A恰好在冰川邊界線上?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】三個(gè)圓交于一點(diǎn),又兩兩將于點(diǎn)、、.以為圓心的一個(gè)圓與上述三個(gè)圓分別交于點(diǎn),,,其中,點(diǎn)在不含點(diǎn)的圓上,等等.又設(shè)、、的外接圓交于一點(diǎn), 、的外接圓交于一點(diǎn).證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】橢圓的左、右焦點(diǎn)分別為,,橢圓上一點(diǎn)與,的距離之和為,且焦距是短軸長(zhǎng)的2倍.
(1)求橢圓的方程;
(2)過線段上一點(diǎn)的直線(斜率不為0)與橢圓相交于,兩點(diǎn),當(dāng)的面積與的面積之比為時(shí),求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】p:關(guān)于x的方程無(wú)解,q:()
(1)若時(shí),“”為真命題,“”為假命題,求實(shí)數(shù)a的取值范圍.
(2)當(dāng)命題“若p,則q”為真命題,“若q,則p”為假命題時(shí),求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)橢圓的右頂點(diǎn)為,上頂點(diǎn)為.已知橢圓的離心率為,.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)直線:與橢圓交于,兩點(diǎn),且點(diǎn)在第二象限.與延長(zhǎng)線交于點(diǎn),若的面積是面積的3倍,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)若等比數(shù)列的前n項(xiàng)和為,求實(shí)數(shù)a的值;
(2)對(duì)于非常數(shù)數(shù)列有下面的結(jié)論:若數(shù)列為等比數(shù)列,則該數(shù)列的前n項(xiàng)和為(為常數(shù)).寫出它的逆命題并判斷真假,請(qǐng)說(shuō)明理由;
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com