【題目】某地上年度電價為0.8元,年用電量為1億千瓦時.本年度計劃將電價調(diào)至0.55元~0.75元之間,經(jīng)測算,若電價調(diào)至元,則本年度新增用電量(億千瓦時)與元成反比例.又當(dāng)時,.
(1)求與之間的函數(shù)關(guān)系式;
(2)若每千瓦時電的成本價為0.3元,則電價調(diào)至多少時,本年度電力部門的收益將比上年增加20%?[收益用電量(實際電價-成本價)]
【答案】(1)與之間的函數(shù)關(guān)系式為();(2)當(dāng)電價調(diào)至元時,本年度電力部門的收益將比上年度增加20%.
【解析】
試題分析:(1)正確理解反比例關(guān)系,待定比例系數(shù),然后得函數(shù)關(guān)系式,實際應(yīng)用題一定要關(guān)注實際定義域,否則易犯錯;(2)按題目的提示建立方程解出,并與實際定義域?qū)φ,作出取?實際應(yīng)用題對題意的理解能力要求比較高,一定要仔細(xì)讀題和審題.
試題解析:(1)因為與 成反比例,所以設(shè)() 3分
把,代入上式,得,即有 5分
所以, 6分
即與之間的函數(shù)關(guān)系式為(). 7分
(2)根據(jù)題意,得 11分
整理,得,解得,.
經(jīng)檢驗,都是所列方程的根.但因為的取值范圍是0.55~0.75,
故不符合題意,應(yīng)舍去.所以. 13分
所以當(dāng)電價調(diào)至元時,本年度電力部門的收益將比上年度增加20%. 14分
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】祖暅原理:“冪勢既同,則積不容異”.它是中國古代一個涉及幾何體體積的問題,意思是兩個同高的幾何體,如在等高處的截面積恒相等,則體積相等.設(shè)為兩個同高的幾何體,的體積不相等,在等高處的截面積不恒相等,根據(jù)祖暅原理可知,是的( )
A. 充分不必要條件 B. 必要不充分條件
C. 充要條件 D. 既不充分也不必要條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中
(1)當(dāng)時,求函數(shù)在上的值域;
(2)若函數(shù)在上的最小值為3,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) , .
(1)若存在極值點(diǎn)1,求的值;
(2)若存在兩個不同的零點(diǎn),求證: (為自然對數(shù)的底數(shù), ).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知⊙C:x2+y2+2x-4y+1=0.
(1)若⊙C的切線在x軸、y軸上截距相等,求切線的方程.
(2)從圓外一點(diǎn)P(x0,y0)向圓引切線PM,M為切點(diǎn),O為原點(diǎn),若|PM|=|PO|,求使|PM|最小的P點(diǎn)坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)命題p:f(x)=2/(x-m)在區(qū)間(1,+∞)上是減函數(shù);;命題q:2x-1+2m>0對任意x∈R恒成立.若(p)∧q為真,求實數(shù)m的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,直三棱柱ABC-A1B1C1中, AB=AC=AA1,AB⊥AC,M是CC1的中點(diǎn),N是BC的中點(diǎn),點(diǎn)P在線段A1B1上運(yùn)動.
(Ⅰ)求證:PN⊥AM;
(Ⅱ)試確定點(diǎn)P的位置,使直線PN和平面ABC所成的角
最大.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)當(dāng)時,不等式恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com