【題目】某地上年度電價為08元,年用電量為1億千瓦時本年度計劃將電價調(diào)至055元~075元之間,經(jīng)測算,若電價調(diào)至元,則本年度新增用電量(億千瓦時)與元成反比例又當(dāng),

(1)之間的函數(shù)關(guān)系式;

(2)若每千瓦時電的成本價為03元,則電價調(diào)至多少時,本年度電力部門的收益將比上年增加20%?[收益用電量(實際電價-成本價)]

【答案】(1)之間的函數(shù)關(guān)系式為);(2)當(dāng)電價調(diào)至元時,本年度電力部門的收益將比上年度增加20%

【解析】

試題分析:(1)正確理解反比例關(guān)系,待定比例系數(shù),然后得函數(shù)關(guān)系式,實際應(yīng)用題一定要關(guān)注實際定義域,否則易犯錯;(2)按題目的提示建立方程解出,并與實際定義域?qū)φ,作出取?實際應(yīng)用題對題意的理解能力要求比較高,一定仔細(xì)讀題和審題

試題解析:(1)因為 成反比例,所以設(shè) 3分

,代入上式,得,即有 5分

所以 6分

之間的函數(shù)關(guān)系式 7分

(2)根據(jù)題意,得 11分

整理,得,解得,

經(jīng)檢驗,都是所列方程的根因為的取值范圍是055~075,

不符合題意,應(yīng)舍去所以 13分

所以當(dāng)電價調(diào)至元時,本年度電力部門的收益將比上年度增加20% 14分

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】祖暅原理:“冪勢既同,則積不容異”.它是中國古代一個涉及幾何體體積的問題,意思是兩個同高的幾何體,如在等高處的截面積恒相等,則體積相等.設(shè)為兩個同高的幾何體,的體積不相等,在等高處的截面積不恒相等,根據(jù)祖暅原理可知,( )

A. 充分不必要條件 B. 必要不充分條件

C. 充要條件 D. 既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中

(1)當(dāng)時,求函數(shù)上的值域;

(2)若函數(shù)上的最小值為3,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) , .

(1)若存在極值點(diǎn)1,求的值;

(2)若存在兩個不同的零點(diǎn),求證: 為自然對數(shù)的底數(shù), ).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知⊙Cx2y22x4y10.

(1)若⊙C的切線在x軸、y軸上截距相等,求切線的方程.

(2)從圓外一點(diǎn)P(x0y0)向圓引切線PM,M為切點(diǎn),O為原點(diǎn),若|PM||PO|,求使|PM|最小的P點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列函數(shù)中,值域為(0,+∞)的是(  )

A. y= B. y=

C. y= D. y=x2+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)命題p:f(x)=2/(x-m)在區(qū)間(1,+∞)上是減函數(shù);;命題q:2x-1+2m>0對任意x∈R恒成立.若(p)∧q為真,求實數(shù)m的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,直三棱柱ABC-A1B1C1中, AB=AC=AA1,AB⊥AC,M是CC1的中點(diǎn),N是BC的中點(diǎn),點(diǎn)P在線段A1B1上運(yùn)動.

(Ⅰ)求證:PN⊥AM;

(Ⅱ)試確定點(diǎn)P的位置,使直線PN和平面ABC所成的角

最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)討論函數(shù)的單調(diào)性;

(2)當(dāng)時,不等式恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案