如圖,三棱柱
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054045640668.png)
中,側面
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054045671506.png)
為菱形,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054045687438.png)
的中點為
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054045703300.png)
,且
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054045718419.png)
平面
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054045671506.png)
.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240540457654359.jpg)
證明:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054045765615.png)
若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054045781576.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054045812812.png)
求三棱柱
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054045640668.png)
的高.
(1)詳見解析;(2)三棱柱
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054045874668.png)
的高為
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054045890478.png)
.
試題分析:(1)根據(jù)題意欲證明線線垂直通?赊D化為證明線面垂直,又由題中四邊形是菱形,故可想到連結
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054045905432.png)
,則O為
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054045921439.png)
與
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054045905432.png)
的交點,又因為側面
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054045968506.png)
為菱形,對角線相互垂直
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054045983563.png)
;又
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054045718419.png)
平面
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054045968506.png)
,所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054046030613.png)
,根據(jù)線面垂直的判定定理可得:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054046046467.png)
平面ABO,結合線面垂直的性質:由于
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054046077434.png)
平面ABO,故
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054046093594.png)
;(2)要求三菱柱的高,根據(jù)題中已知條件可轉化為先求點O到平面ABC的距離,即:作
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054046108552.png)
,垂足為D,連結AD,作
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054046124545.png)
,垂足為H,則由線面垂直的判定定理可得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054046139405.png)
平面ABC,再根據(jù)三角形面積相等:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054046155708.png)
,可求出
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054046186377.png)
的長度,最后由三棱柱
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054045874668.png)
的高為此距離的兩倍即可確定出高.
試題解析:(1)連結
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054045905432.png)
,則O為
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054045921439.png)
與
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054045905432.png)
的交點.
因為側面
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054045968506.png)
為菱形,所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054045983563.png)
.
又
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054045718419.png)
平面
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054045968506.png)
,所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054046030613.png)
,
故
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054046046467.png)
平面ABO.
由于
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054046077434.png)
平面ABO,故
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054046093594.png)
.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240540464208356.png)
(2)作
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054046108552.png)
,垂足為D,連結AD,作
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054046124545.png)
,垂足為H.
由于,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054046467555.png)
,故
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054046483429.png)
平面AOD,所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054046498551.png)
,
又
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054046124545.png)
,所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054046139405.png)
平面ABC.
因為
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054046561708.png)
,所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054046592548.png)
為等邊三角形,又
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054046607450.png)
,可得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054046623648.png)
.
由于
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054046639578.png)
,所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054046670832.png)
,
由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054046155708.png)
,且
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240540467011009.png)
,得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054046717686.png)
,
又O為
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054045921439.png)
的中點,所以點
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054046732341.png)
到平面ABC的距離為
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054045890478.png)
.
故三棱柱
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054045874668.png)
的高為
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054045890478.png)
.
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,在三棱錐
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824055935191529.png)
中,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824055935207640.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824055935238393.png)
平面
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824055935238459.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824055935254310.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824055935285294.png)
分別為
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824055935301359.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824055935316385.png)
的中點.
(1)求證:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824055935332430.png)
平面
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824055935238459.png)
;
(2)求證:平面
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824055935363475.png)
平面
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824055935379439.png)
.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240559354104066.png)
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,在斜三棱柱
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824055020330672.png)
中,側面
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824055020361786.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824055020376539.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824055020408410.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824055020423477.png)
,底面
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824055020439475.png)
是邊長為
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824055020454291.png)
的正三角形,其重心為
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824055020486316.png)
點,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824055020501318.png)
是線段
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824055020517417.png)
上一點,且
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824055020532709.png)
.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240550205642457.png)
(1)求證:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824055020579480.png)
側面
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824055020595503.png)
;
(2)求平面
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824055020626518.png)
與底面
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824055020439475.png)
所成銳二面角的正切值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分12分)
如圖,三棱柱
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824053909279661.png)
中,側面
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824053909497489.png)
為菱形,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824053909513571.png)
.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240539095603624.png)
(Ⅰ)證明:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824053909575558.png)
;
(Ⅱ)若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824053909591580.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824053909606677.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824053909638526.png)
,求二面角
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824053909653606.png)
的余弦值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,四棱錐
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824053631344450.png)
的底面
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824053631469401.png)
是平行四邊形,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824053631484554.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824053631516658.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824053631547323.png)
分別是棱
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824053631562440.png)
的中點.
(1)證明
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824053631594345.png)
平面
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824053631625371.png)
;
(2)若二面角P-AD-B為
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824053631640347.png)
,
①證明:平面PBC⊥平面ABCD
②求直線EF與平面PBC所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,已知長方形
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052338129534.png)
中,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052338144484.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052338160436.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052338176399.png)
為
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052338207405.png)
的中點.將
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052338222607.png)
沿
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052338238478.png)
折起,使得平面
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052338254562.png)
平面
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052338269604.png)
.
(1)求證:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052338285626.png)
;
(2)若點
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052338316318.png)
是線段
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052338332380.png)
的中點,求二面角
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052338347662.png)
的余弦值.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240523383633878.png)
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,已知四棱錐P—ABCD的底面為等腰梯形,AB∥CD,AC⊥BD,垂足為H,PH是四棱錐的高,E為AD的中點.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240505386223430.jpg)
(1)證明:PE⊥BC;
(2)若∠APB=∠ADB=60°,求直線PA與平面PEH所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,正四棱柱
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823130627485564.gif)
中,底面邊長為
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823130627485235.gif)
,側棱長為4,點
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823130627532239.gif)
分別為棱
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823130627610404.gif)
的中點,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823130627641480.gif)
,求點
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823130627657212.gif)
到平面
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823130627766376.gif)
的距離
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823130627781194.gif)
.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231306277972746.jpg)
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
設l,m是兩條不同的直線,α是一個平面,則下列命題正確的個數(shù)為________.
①若l⊥m,m?α,則l⊥α;②若l⊥α,l∥m,則m⊥α;③若l∥α,m?α,則l∥m;④若l∥α,m∥α,則l∥m.
查看答案和解析>>