如圖,在Rt△ABC中,∠C=90°,AC=6,BC=8,⊙O為△ABC的內(nèi)切圓,點(diǎn)D是斜邊AB的中點(diǎn),則tan∠ODA=( 。
精英家教網(wǎng)
A、
3
2
B、
3
3
C、
3
D、2
分析:⊙O與AB相切于點(diǎn)E,連接OE,則OE⊥AB.根據(jù)勾股定理得AB=10,再根據(jù)切線長(zhǎng)定理可以求得AE=4.根據(jù)直角三角形斜邊上的中線等于斜邊的一半,得AD=5,DE=1.根據(jù)直角三角形內(nèi)切圓的半徑等于兩條直角邊的和與斜邊的差的一半,得內(nèi)切圓的半徑是2,從而求得tan∠ODA=2.
解答:精英家教網(wǎng)解:設(shè)⊙O與AB相切于點(diǎn)E,連接OE,則OE⊥AB.
∵∠C=90°,AC=6,BC=8,
∴AB=10,
∴AE=
10+6-8
2
=4.
∵⊙O為△ABC的內(nèi)切圓,點(diǎn)D是斜邊AB的中點(diǎn),
∴AD=5,則DE=1,
∴r=
6+8-10
2
=2
∴tan∠ODA=2.
故選D.
點(diǎn)評(píng):此題要能夠根據(jù)切線長(zhǎng)定理證明:作三角形的內(nèi)切圓,其中的切線長(zhǎng)等于切線長(zhǎng)所在的兩邊和與對(duì)邊差的一半;直角三角形內(nèi)切圓的半徑等于兩條直角邊的和與斜邊的差的一半.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在Rt△ABC中,∠C=90°,D為BC上一點(diǎn),∠DAC=30°,BD=2,AB=2
3
,則AC的長(zhǎng)為( 。
A、2
2
B、3
C、
3
D、
3
2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在Rt△ABC中,∠ACB=90°,以AC為直徑的⊙O與AB邊交于點(diǎn)D,過點(diǎn)D作⊙O的切線,交BC于點(diǎn)E.
(1)求證:點(diǎn)E是邊BC的中點(diǎn);
(2)若EC=3,BD=2
6
,求⊙O的直徑AC的長(zhǎng)度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABC中,∠ABC=90°,BA=BC=2,AE⊥平面ABC,CD⊥平面ABC,CE交AD于點(diǎn)P.
(1)若AE=CD,點(diǎn)M為BC的中點(diǎn),求證:直線MP∥平面EAB
(2)若AE=2,CD=1,求銳二面角E-BC-A的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

8.如圖,在Rt△ABC中,∠CAB=90°,AB=2,AC=
2
2
.DO⊥AB于O點(diǎn),OA=OB,DO=2,曲線E過C點(diǎn),動(dòng)點(diǎn)P在E上運(yùn)動(dòng),且保持|PA|+|PB|的值不變.
(1)建立適當(dāng)?shù)淖鴺?biāo)系,求曲線E的方程;
(2)過D點(diǎn)的直線L與曲線E相交于不同的兩點(diǎn)M、N且M在D、N之間,設(shè)
DM
DN
=λ,試確定實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在Rt△ABC中,AC=1,BC=x,D是斜邊AB的中點(diǎn),將△BCD沿直線CD翻折,若在翻折過程中存在某個(gè)位置,使得CB⊥AD,則x的取值范圍是(  )
A、(0,
3
]
B、(
2
2
,2]
C、(
3
,2
3
]
D、(2,4]

查看答案和解析>>

同步練習(xí)冊(cè)答案