【題目】已知函數(shù)f(x)=ax3+bx+1且f(m)=6,則f(﹣m)= .
【答案】-4
【解析】解:∵函數(shù)f(x)=ax3+bx+1,
∴f(﹣x)=a(﹣x)3+b(﹣x)+1=﹣ax3﹣bx+1,
∴f(﹣x)+f(x)=2,
∴f(﹣m)+f(m)=2.
∵f(m)=6,
∴f(﹣m)=﹣4.
所以答案是:﹣4
【考點(diǎn)精析】本題主要考查了函數(shù)奇偶性的性質(zhì)的相關(guān)知識(shí)點(diǎn),需要掌握在公共定義域內(nèi),偶函數(shù)的加減乘除仍為偶函數(shù);奇函數(shù)的加減仍為奇函數(shù);奇數(shù)個(gè)奇函數(shù)的乘除認(rèn)為奇函數(shù);偶數(shù)個(gè)奇函數(shù)的乘除為偶函數(shù);一奇一偶的乘積是奇函數(shù);復(fù)合函數(shù)的奇偶性:一個(gè)為偶就為偶,兩個(gè)為奇才為奇才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知全集U={1,2,3,4,5,6,7,8},A={2,4,8},B={1,4,5,7},則(UA)∩B=( )
A.{4}
B.{1,5,7}
C.{1,2,5,7,8}
D.{1,2,4,5,7,8}
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè){an}(n∈N*)是等差數(shù)列,Sn是其前n項(xiàng)的和,且S5<S6 , S6=S7>S8 , 則下列結(jié)論錯(cuò)誤的是( )
A.d<0
B.a7=0
C.S9>S5
D.S6與S7均為Sn的最大值
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】“x∈R,x2+ax+1≥0成立”是“|a|≤1”的( )
A.充分必要條件
B.必要而不充分條件
C.充分而不必要條件
D.既不充分也不必要條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列命題正確的是( 。
A.若兩條直線和同一個(gè)平面所成的角相等,則這兩條直線平行
B.若一個(gè)平面內(nèi)有三個(gè)點(diǎn)到另一個(gè)平面的距離相等,則這兩個(gè)平面平行
C.若一條直線平行于兩個(gè)相交平面,則這條直線與這兩個(gè)平面的交線平行
D.若兩個(gè)平面都垂直于第三個(gè)平面,則這兩個(gè)平面平行
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知定義在R上的函數(shù)y=f(x)滿足下列三個(gè)條件:
①對(duì)任意的x∈R都有f(x)=f(x+4);
②對(duì)于任意的0≤x1<x2≤2,都有f(x1)<f(x2);
③y=f(x+2)的圖象關(guān)于y軸對(duì)稱.
則下列結(jié)論中,正確的是( 。
A.f(4.5)<f(6.5)<f(7)
B.f(4.5)<f(7)<f(6.5)
C.f(7)<f(4.5)<f(6.5)
D.f(7)<f(6.5)<f(4.5)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=4x﹣22x+1﹣6,其中x∈[0,3].
(1)求函數(shù)f(x)的最大值和最小值;
(2)若實(shí)數(shù)a滿足:f(x)﹣a≥0恒成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】四名同學(xué)報(bào)名參加三項(xiàng)課外活動(dòng),每人限報(bào)其中一項(xiàng),不同報(bào)名方法共有( )
A.12
B.64
C.81
D.7
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com