【題目】已知平面直角坐標(biāo)系內(nèi)兩定點(diǎn),及動(dòng)點(diǎn)的兩邊所在直線的斜率之積為.

(1)求動(dòng)點(diǎn)的軌跡的方程;

(2)設(shè)軸上的一點(diǎn),若(1)中軌跡上存在兩點(diǎn)使得,求以為直徑的圓面積的取值范圍.

【答案】(1);(2)

【解析】分析:(1)由已知,列出方程,即可求解點(diǎn)的軌跡的方程;

(2)設(shè)點(diǎn)的坐標(biāo)為,當(dāng)直線斜率不存在時(shí),可得,當(dāng)直線斜率存在時(shí),設(shè)直線的方程為,聯(lián)立方程組,求解,由此列出不等式組,進(jìn)而求得,又由為長(zhǎng)軸端點(diǎn)時(shí),可求得的坐標(biāo)點(diǎn),求得的值,即可得到結(jié)論.

詳解:(1)由已知,即,

所以,又三點(diǎn)構(gòu)成三角形,得

所以點(diǎn)的軌跡的方程為.

(2)設(shè)點(diǎn)的坐標(biāo)為,

當(dāng)直線斜率不存在時(shí),可得分別是短軸的兩端點(diǎn),得到

當(dāng)直線斜率存在時(shí),設(shè)直線的方程為,

則由①,

聯(lián)立,得,

,整理得.

由韋達(dá)定理得,②

由①②,消去,

,解得,

又因?yàn)?/span>為長(zhǎng)軸端點(diǎn)時(shí),可求得點(diǎn),此時(shí),

綜上,,又因?yàn)橐?/span>為直徑的圓面積,

所以的取值范圍是.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;

(2)若的負(fù)整數(shù)解有且只有兩個(gè),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】北京101中學(xué)校園內(nèi)有一個(gè)“少年湖”,湖的兩側(cè)有一個(gè)音樂教室和一個(gè)圖書館,如圖,若設(shè)音樂教室在A處,圖書館在B處,為測(cè)量A,B兩地之間的距離,某同學(xué)選定了與A,B不共線的C處,構(gòu)成△ABC,以下是測(cè)量的數(shù)據(jù)的不同方案:①測(cè)量∠A,AC,BC;②測(cè)量∠A,B,BC;③測(cè)量∠C,AC,BC;④測(cè)量∠AC,B. 其中一定能唯一確定A,B兩地之間的距離的所有方案的序號(hào)是_______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某研究機(jī)構(gòu)對(duì)高三學(xué)生的記憶力和判斷力進(jìn)行統(tǒng)計(jì)分析,得下表數(shù)據(jù):

6

8

10

12

2

3

5

6

(1)請(qǐng)?jiān)趫D中畫出上表數(shù)據(jù)的散點(diǎn)圖;

(2)請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程;

(3)試根據(jù)(2)求出的線性回歸方程,預(yù)測(cè)記憶力為9的同學(xué)的判斷力.

相關(guān)公式:,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中, 橢圓的中心在坐標(biāo)原點(diǎn),其右焦點(diǎn)為,且點(diǎn) 在橢圓上.

(1)求橢圓的方程;

(2)設(shè)橢圓的左、右頂點(diǎn)分別為,是橢圓上異于的任意一點(diǎn),直線交橢圓于另一點(diǎn),直線交直線點(diǎn), 求證:三點(diǎn)在同一條直線上

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“克拉茨猜想”又稱“猜想”,是德國(guó)數(shù)學(xué)家洛薩克拉茨在1950年世界數(shù)學(xué)家大會(huì)上公布的一個(gè)猜想:任給一個(gè)正整數(shù),如果是偶數(shù),就將它減半;如果為奇數(shù)就將它乘3加1,不斷重復(fù)這樣的運(yùn)算,經(jīng)過有限步后,最終都能夠得到1.己知正整數(shù)經(jīng)過6次運(yùn)算后得到1,則的值為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直三棱柱中,,為棱的中點(diǎn),為棱上一點(diǎn),

(1)確定的位置,使得平面 平面,并說明理由;

(2)設(shè)二面角的正切值為,為線段上一點(diǎn),且與平面所成角的正弦值為,求線段的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出下列命題:

①函數(shù)是奇函數(shù);

②將函數(shù)的圖像向左平移個(gè)單位長(zhǎng)度,得到函數(shù)的圖像;

③若是第一象限角且,則;

是函數(shù)的圖像的一條對(duì)稱軸;

⑤函數(shù)的圖像關(guān)于點(diǎn)中心對(duì)稱。

其中,正確的命題序號(hào)是______________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的圖象與軸相切,且切點(diǎn)在軸的正半軸上.

1)求曲線,直線軸圍成圖形的面積;

2若函數(shù)上的極小值不大于,的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案