【題目】某研究型學習小組調(diào)查研究中學生使用智能手機對學習的影響.部分統(tǒng)計數(shù)據(jù)如下表:

參考數(shù)據(jù):

參考公式: ,其中

(Ⅰ)試根據(jù)以上數(shù)據(jù),運用獨立性檢驗思想,指出有多大把握認為中學生使用智能手機對學習有影響?

()研究小組將該樣本中使用智能手機且成績優(yōu)秀的4位同學記為組,不使用智能手機且成績優(yōu)秀的8位同學記為組,計劃從組推選的2人和組推選的3人中,隨機挑選兩人在學校升旗儀式上作國旗下講話分享學習經(jīng)驗.求挑選的兩人恰好分別來自、兩組的概率.

【答案】(1)該研究小組有995%的把握認為中學生使用智能手機對學習有影響;(2)

【解析】試題分析:()根據(jù)列聯(lián)表,計算 ,對比參考數(shù)據(jù), ,所以有995%的把握認為中學生使用智能手機對學習有影響;()將 組中的2人,和組中的3人編號,列舉所有挑選兩人的基本事件的個數(shù),和其中分別來自兩組的基本事件的個數(shù),最后相除就是所求概率.

試題解析:()根據(jù)上方公式求得

因為

所以該研究小組有995%的把握認為中學生使用智能手機對學習有影響.

()組推選的兩名同學為, 組推選的三名同學為

則從中隨機選出兩名同學包含如下10個基本事件:

記挑選的兩人恰好分別來自兩組為事件,

則事件包含如下6 個基本事件:

即挑選的兩人恰好分別來自兩組的概率是

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)函數(shù)

(1)若,求曲線處的切線方程;

(2)若當時, ,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】交強險是車主必須為機動車購買的險種,若普通座以下私家車投保交強險第一年的費用(基準保費)統(tǒng)一為元,在下一年續(xù)保時,實行的是費率浮動機制,保費與上一年度車輛發(fā)生道路交通事故的情況相聯(lián)系,發(fā)生交通事故的次數(shù)越多,費率也就越高,具體浮動情況如下表:

某機構(gòu)為了研究某一品牌普通座以下私家車的投保情況,隨機抽取了輛車齡已滿三年的該品牌同型號私家車的下一年續(xù)保時的情況,統(tǒng)計得到了下面的表格:

類型

數(shù)量

10

5

5

20

15

5

以這輛該品牌車的投保類型的頻率代替一輛車投保類型的概率,完成下列問題:

(Ⅰ)按照我國《機動車交通事故責任強制保險條例》汽車交強險價格的規(guī)定, ,記為某同學家里的一輛該品牌車在第四年續(xù)保時的費用,求的分布列與數(shù)學期望;(數(shù)學期望值保留到個位數(shù)字)

(Ⅱ)某二手車銷售商專門銷售這一品牌的二手車,且將下一年的交強險保費高于基本保費的車輛記為事故車,假設(shè)購進一輛事故車虧損元,一輛非事故車盈利元:

①若該銷售商購進三輛(車齡已滿三年)該品牌二手車,求這三輛車中至少有一輛事故車的概率;

②若該銷售商一次購進輛(車齡已滿三年)該品牌二手車,求他獲得利潤的期望值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在多面體中,是等邊三角形,是等腰直角三角形,,平面平面,平面,點的中點,連接.

(1)求證:平面;

(2),求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

)求的單調(diào)區(qū)間;

)若曲線有三個不同的交點,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在長為2的正方形,點,分別,中點,將分別沿起,使兩點重合于.

求證;

求四棱體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】種飲料每箱裝有6聽,經(jīng)檢測,箱中每的容量(單位:ml)如以下莖葉圖所示.

)求這箱飲料的平均容量和容量的中位數(shù);

)如果從這箱飲料中隨機取出2聽飲用,求取到的2聽飲料中至少有1聽的容量為250ml概率

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(Ⅰ)討論函數(shù)的單調(diào)區(qū)間與極值;

(Ⅱ)若恒成立,求的最大值;

(Ⅲ)在(Ⅱ)的條件下,且取得最大值時,設(shè),且函數(shù)有兩個零點,求實數(shù)的取值范圍,并證明:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知

1為常數(shù),且在區(qū)間變化時,求的最小值;

2證明:對任意的,總存在,使得

查看答案和解析>>

同步練習冊答案