【題目】如圖,在正方體ABCD﹣A'B'C'D'中,點(diǎn)P在線段AD'上,且AP≤ AD'則異面直線CP與BA'所成角θ的取值范圍是 .
【答案】[ , ]
【解析】解:如圖,ABCD﹣A'B'C'D'是正方體,連結(jié)CD',則異面直線CP與BA'所成的角θ等于∠D'CP,
由圖可知,當(dāng)P點(diǎn)與A點(diǎn)重合時(shí),可得θ= .
當(dāng)P點(diǎn)無限接近D'點(diǎn)時(shí),θ趨近于0,
∵AP≤ AD',故得P在AD'中點(diǎn)時(shí),θ最小,
設(shè)正方體的邊長(zhǎng)為1,則AD'= ,CD'= ,PC=
AP= AD'= ,
即: =
∴ .
所以異面直線CP與BA'所成角θ的取值范圍是[ , ].
所以答案是:[ , ].
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解異面直線及其所成的角的相關(guān)知識(shí),掌握異面直線所成角的求法:1、平移法:在異面直線中的一條直線中選擇一特殊點(diǎn),作另一條的平行線;2、補(bǔ)形法:把空間圖形補(bǔ)成熟悉的或完整的幾何體,如正方體、平行六面體、長(zhǎng)方體等,其目的在于容易發(fā)現(xiàn)兩條異面直線間的關(guān)系.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}滿足a1=1,an+an+1=( )n , Sn=a1+3a2+32a3+…+3n﹣1an , 利用類似等比數(shù)列的求和方法,可求得4Sn﹣3nan= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有兩個(gè)袋子,其中甲袋中裝有編號(hào)分別為1、2、3、4的4個(gè)完全相同的球,乙袋中裝有編號(hào)分別為2、4、6的3個(gè)完全相同的球.
(Ⅰ)從甲、乙袋子中各取一個(gè)球,求兩球編號(hào)之和小于8的概率;
(Ⅱ)從甲袋中取2個(gè)球,從乙袋中取一個(gè)球,求所取出的3個(gè)球中含有編號(hào)為2的球的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,該幾何體是由一個(gè)直三棱柱ADE﹣BCF和一個(gè)正四棱錐P﹣ABCD組合而成,AD⊥AF,AE=AD=2.
(Ⅰ)證明:平面PAD⊥平面ABFE;
(Ⅱ)求正四棱錐P﹣ABCD的高h(yuǎn),使得二面角C﹣AF﹣P的余弦值是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若鈍角三角形的三邊長(zhǎng)和面積都是整數(shù),則稱這樣的三角形為“鈍角整數(shù)三角形”,下列選項(xiàng)中能構(gòu)成一個(gè)“鈍角整數(shù)三角形”三邊長(zhǎng)的是( )
A.2,3,4
B.2,4,5
C.5,5,6
D.4,13,15
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市規(guī)定,高中學(xué)生在校期間須參加不少于80小時(shí)的社區(qū)服務(wù)才合格.某校隨機(jī)抽取20位學(xué)生參加社區(qū)服務(wù)的數(shù)據(jù),按時(shí)間段[75,80),[80,85),[85,90),[90,95),[95,100](單位:小時(shí))進(jìn)行統(tǒng)計(jì),其頻率分布直方圖如圖所示.
(1)求抽取的20人中,參加社區(qū)服務(wù)時(shí)間不少于90小時(shí)的學(xué)生人數(shù);
(2)從參加社區(qū)服務(wù)時(shí)間不少于90小時(shí)的學(xué)生中任意選取2人,求所選學(xué)生的參加社區(qū)服務(wù)時(shí)間在同一時(shí)間段內(nèi)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,已知曲線的極坐標(biāo)方程為.
(1)求曲線的普通方程與曲線的直角坐標(biāo)方程;
(2)曲線與相交于兩點(diǎn),求過兩點(diǎn)且面積最小的圓的標(biāo)準(zhǔn)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合,對(duì)于集合的兩個(gè)非空子集, ,若,則稱為集合的一組“互斥子集”.記集合的所有“互斥子集”的組數(shù)為 (視與為同一組“互斥子集”).
(1)寫出, , 的值;
(2)求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為迎接中國(guó)共產(chǎn)黨的十九大的到來,某校舉辦了“祖國(guó),你好”的詩歌朗誦比賽.該校高三年級(jí)準(zhǔn)備從包括甲、乙、丙在內(nèi)的7名學(xué)生中選派4名學(xué)生參加,要求甲、乙、丙這3名同學(xué)中至少有1人參加,且當(dāng)這3名同學(xué)都參加時(shí),甲和乙的朗誦順序不能相鄰,那么選派的4名學(xué)生不同的朗誦順序的種數(shù)為( )
A. 720 B. 768 C. 810 D. 816
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com