【題目】已知如圖1直角梯形,,,,,為的中點,沿將梯形折起(如圖2),使平面平面.
(1)證明平面;
(2)在線段上是否存在點,使得平面與平面所成的銳二面角的余弦值為.
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的離心率,是橢圓上一點.
(1)求橢圓的方程;
(2)若直線的斜率為,且直線交橢圓于、兩點,點關于原點的對稱點為,點是橢圓上一點,判斷直線與的斜率之和是否為定值,如果是,請求出此定值,如果不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】把分別寫有1,2,3,4,5的五張卡片全部分給甲、乙、丙三個人,每人至少一張,且若分得的卡片超過一張,則必須是連號,那么不同的分法種數(shù)為______用數(shù)字作答.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】一個工廠在某年連續(xù)10個月每月產(chǎn)品的總成本y(萬元)與該月產(chǎn)量x(萬件)之間有如下一組數(shù)據(jù):
x | 1.08 | 1.12 | 1.19 | 1.28 | 1.36 | 1.48 | 1.59 | 1.68 | 1.80 | 1.87 |
y | 2.25 | 2.37 | 2.40 | 2.55 | 2.64 | 2.75 | 2.92 | 3.03 | 3.14 | 3.26 |
(1)通過畫散點圖,發(fā)現(xiàn)可用線性回歸模型擬合y與x的關系,請用相關系數(shù)加以說明;
(2)①建立月總成本y與月產(chǎn)量x之間的回歸方程;
②通過建立的y關于x的回歸方程,估計某月產(chǎn)量為1.98萬件時,此時產(chǎn)品的總成本為多少萬元?
(均精確到0.001)
附注:①參考數(shù)據(jù):,
,
②參考公式:相關系數(shù),
回歸方程中斜率和截距的最小二乘估計公式分別為:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某學校初中部共120名教師,高中部共180名教師,其性別比例如圖所示,已知按分層抽樣方法得到的工會代表中,高中部女教師有6人,則工會代表中男教師的總人數(shù)為________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,曲線的參數(shù)方程為(為參數(shù)),曲線的直角坐標方程為.
(1)求與的極坐標方程;
(2)在以為極點,軸的正半軸為極軸的極坐標系中,射線與的異于極點的交點為,與的異于極點的交點為,求.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】019年底,湖北省武漢市等多個地區(qū)陸續(xù)出現(xiàn)感染新型冠狀病毒肺炎的患者,為及時有效地對疫情數(shù)據(jù)進行流行病學統(tǒng)計分析,某地研究機構針對該地實際情況,根據(jù)該地患者是否有武漢旅行史與是否有確診病例接觸史,將新冠肺炎患者分為四類:有武漢旅行史(無接觸史),無武漢旅行史(無接觸史),有武漢旅行史(有接觸史)和無武漢旅行史(有接觸史),統(tǒng)計得到以下相關數(shù)據(jù):
(1)請將列聯(lián)表填寫完整,并判斷能否在犯錯誤的概率不超過0.01的前提下,認為有武漢旅行史與有確診病例接觸史有關系?
有接觸史 | 無接觸史 | 總計 | |
有武漢旅行史 | 4 | ||
無武漢旅行史 | 10 | ||
總計 | 25 | 45 |
(2)已知在無武漢旅行史的10名患者中,有2名無癥狀感染者.現(xiàn)在從無武漢旅行史的10名患者中,選出2名進行病例研究,記選出無癥狀感染者的人數(shù)為,求的分布列以及數(shù)學期望.
下面的臨界值表供參考:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.076 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
參考公式:,其中.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com