【題目】如圖,直線與軸,軸分別相交于點(diǎn)B、C,經(jīng)過(guò)B、C兩點(diǎn)的拋物線與軸的另一交點(diǎn)為A,頂點(diǎn)為P,且對(duì)稱軸為直線.
(1)求該拋物線的函數(shù)表達(dá)式;
(2)連結(jié)AC.請(qǐng)問(wèn)在軸上是否存在點(diǎn)Q,使得以點(diǎn)P、B、Q為頂點(diǎn)的三角形與△ABC 相似,若存在,請(qǐng)求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
【答案】(1)y=x2-4x+3;(2)存在,(0,0),(,0)
【解析】
(1)先由直線解析式求出B,C兩點(diǎn)坐標(biāo),再根據(jù)對(duì)稱軸為直線可求出點(diǎn)A的坐標(biāo),A,B,C三點(diǎn)坐標(biāo)代入,可得拋物線的函數(shù)式;(2)設(shè)拋物線的對(duì)稱軸交x軸于點(diǎn)M,由可知,由可知,由相似三角形對(duì)應(yīng)邊的比相等可求出點(diǎn)Q。
解:(1)∵直線y=-x+3與x軸相交于點(diǎn)B,∴當(dāng)y=0時(shí),x=3.
∴點(diǎn)B的坐標(biāo)為.
又∵拋物線過(guò)x軸上的A,B兩點(diǎn),且對(duì)稱軸為x=2,
根據(jù)拋物線的對(duì)稱性,∴點(diǎn)A的坐標(biāo)為(1,0).
∵y=-x+3過(guò)點(diǎn)C,易知,∴c=3.
又∵拋物線過(guò)點(diǎn),,
∴ 解得 ∴
(2)設(shè)在x軸上存在點(diǎn)Q.連結(jié)PB,由,得.
設(shè)拋物線的對(duì)稱軸交x軸于點(diǎn)M.
在Rt△PBM中,PM=MB=1,∴△PBM為等腰直角三角形.∴.
由點(diǎn),,可得OB=OC=3,∴△OBC為等腰直角三角形.∴.
由勾股定理,得.
假設(shè)在x軸上存在點(diǎn)Q,使得以點(diǎn)P,B,Q為頂點(diǎn)的三角形與△ABC相似.
①當(dāng),∠PBQ=∠ABC=45°時(shí),△PBQ∽△ABC.
即,∴BQ=3.∴Q1的坐標(biāo)是(0,0).
②當(dāng),∠QBP=∠ABC=45°時(shí),△QBP∽△ABC,
即,∴QB=.∴Q2的坐標(biāo)是(,0).
由題意知點(diǎn)Q不可能在B點(diǎn)右側(cè)的x軸上.綜上所述,在x軸上存在兩點(diǎn)Q1(0,0),Q2(,0)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】數(shù)學(xué)是研究數(shù)量、結(jié)構(gòu)、變化、空間以及信息等概念的一門科學(xué).在人類歷史發(fā)展和社會(huì)生活中,數(shù)學(xué)發(fā)揮著不可替代的作用,也是學(xué)習(xí)和研究現(xiàn)代科學(xué)技術(shù)必不可少的基本工具.
(1)為調(diào)查大學(xué)生喜歡數(shù)學(xué)命題是否與性別有關(guān),隨機(jī)選取名大學(xué)生進(jìn)行問(wèn)卷調(diào)查,當(dāng)被調(diào)查者問(wèn)卷評(píng)分不低于分則認(rèn)為其喜歡數(shù)學(xué)命題,當(dāng)評(píng)分低于分則認(rèn)為其不喜歡數(shù)學(xué)命題,問(wèn)卷評(píng)分的莖葉圖如下:
依據(jù)上述數(shù)據(jù)制成如下列聯(lián)表:
請(qǐng)問(wèn)是否有的把握認(rèn)為大學(xué)生是否喜歡數(shù)學(xué)命題與性別有關(guān)?
參考公式及數(shù)據(jù):.
(2)在某次命題大賽中,同學(xué)要進(jìn)行輪命題,其在每輪命題成功的概率均為,各輪命題相互獨(dú)立,若該同學(xué)在輪命題中恰有次成功的概率為,記該同學(xué)在輪命題中的成功次數(shù)為,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知點(diǎn),點(diǎn),、分別為線段、上的動(dòng)點(diǎn),且滿足.
(1)若,求點(diǎn)的坐標(biāo);
(2)設(shè)點(diǎn)的坐標(biāo)為,求的外接圓的一般方程,并求的外接圓所過(guò)定點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某旅游愛(ài)好者計(jì)劃從3個(gè)亞洲國(guó)家A1,A2,A3和3個(gè)歐洲國(guó)家B1,B2,B3中選擇2個(gè)國(guó)家去旅游.
(1)若從這6個(gè)國(guó)家中任選2個(gè),求這2個(gè)國(guó)家都是亞洲國(guó)家的概率;
(2)若從亞洲國(guó)家和歐洲國(guó)家中各選1個(gè),求這兩個(gè)國(guó)家包括A1,但不包括B1的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的長(zhǎng)軸長(zhǎng)為6,且橢圓與圓的公共弦長(zhǎng)為.
(1)求橢圓的方程;
(2)過(guò)點(diǎn)P(0,1)作斜率為的直線與橢圓交于兩點(diǎn),,試判斷在軸上是否存在點(diǎn),使得為以為底邊的等腰三角形,若存在,求出點(diǎn)的橫坐標(biāo)的取值范圍;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某環(huán)線地鐵按內(nèi)、外環(huán)線同時(shí)運(yùn)行,內(nèi)、外環(huán)線的長(zhǎng)均為30千米(忽略內(nèi)、外環(huán)線長(zhǎng)度差異).
(1)當(dāng)9列列車同時(shí)在內(nèi)環(huán)線上運(yùn)行時(shí),要使內(nèi)環(huán)線乘客最長(zhǎng)候車時(shí)間為10分鐘,求內(nèi)環(huán)線列車的最小平均速度;
(2)新調(diào)整的方案要求內(nèi)環(huán)線列車平均速度為25千米/小時(shí),外環(huán)線列車平均速度為30千米/小時(shí).現(xiàn)內(nèi)、外環(huán)線共有18列列車全部投入運(yùn)行,要使內(nèi)外環(huán)線乘客的最長(zhǎng)候車時(shí)間之差不超過(guò)1分鐘,向內(nèi)、外環(huán)線應(yīng)各投入幾列列車運(yùn)行?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)是單調(diào)遞增函數(shù),其反函數(shù)是.
(1)若,求并寫出定義域;
(2)對(duì)于⑴的和,設(shè)任意,,,求證:;
(3)已知函數(shù)和的圖象有交點(diǎn),求證:它們的交點(diǎn)一定在直線上.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某同學(xué)用“五點(diǎn)法”畫函數(shù)在某一個(gè)周期內(nèi)的圖象時(shí),列出了如表并給出了部分?jǐn)?shù)據(jù):
0 | π | ||||
x | |||||
0 | 2 | 0 | 0 |
(1)請(qǐng)根據(jù)上表數(shù)據(jù),寫出函數(shù)的解析式;(直接寫出結(jié)果即可)
(2)求函數(shù)的單調(diào)遞增區(qū)間;
(3)設(shè),已知函數(shù)在區(qū)間上的最大值是img src="http://thumb.zyjl.cn/questionBank/Upload/2020/11/26/20/139c9676/SYS202011262014544768390673_ST/SYS202011262014544768390673_ST.013.png" width="24" height="24" style="-aw-left-pos:0pt; -aw-rel-hpos:column; -aw-rel-vpos:paragraph; -aw-top-pos:0pt; -aw-wrap-type:inline" />,求t的值以及函數(shù)在區(qū)間[上的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校在2013年的自主招生考試成績(jī)中隨機(jī)抽取40名學(xué)生的筆試成績(jī),按成績(jī)共分成五組:第1組[75,80),第2組[80,85),第3組[85,90),第4組[90,95),第5組[95,100],得到的頻率分布直方圖如圖所示,同時(shí)規(guī)定成績(jī)?cè)?/span>85分以上的學(xué)生為“優(yōu)秀”,成績(jī)小于85分的學(xué)生為“良好”,且只有成績(jī)?yōu)?/span>“優(yōu)秀”的學(xué)生才能獲得面試資格.
(1)求出第4組的頻率,并補(bǔ)全頻率分布直方圖;
(2)根據(jù)樣本頻率分布直方圖估計(jì)樣本的中位數(shù)與平均數(shù);
(3)如果用分層抽樣的方法從“優(yōu)秀”和“良好”的學(xué)生中共選出5人,再?gòu)倪@5人中選2人,那么至少有一人是“優(yōu)秀”的概率是多少?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com