如圖,橢圓C:焦點(diǎn)在x軸上,左、右頂點(diǎn)分別為A1,A,上頂點(diǎn)為B,拋物線(xiàn)C1,C2分別以A,B為焦點(diǎn),其頂點(diǎn)均為坐標(biāo)原點(diǎn)O,C1與C2相交于直線(xiàn)上一點(diǎn)P。
(1)求橢圓C及拋物線(xiàn)C1,C2的方程;
(2)若動(dòng)直線(xiàn)l與直線(xiàn)OP垂直,且與橢圓C交于不同兩點(diǎn)M,N,已知點(diǎn),求的最小值。
解:(1)由題意,A(a,0),
故拋物線(xiàn)C1的方程可設(shè)為y2=4ax,C2的方程為
,得a=4,
所以橢圓C:
拋物線(xiàn)C1:y2=16x,拋物線(xiàn)C2。
(2)由(1)知,直線(xiàn)OP的斜率為
所以直線(xiàn)l的斜率為
設(shè)直線(xiàn)l方程為
消去y,整理得
因?yàn)閯?dòng)直線(xiàn)l與橢圓C交于不同兩點(diǎn),
所以Δ=128b2-20(8b2-16)>0,
解得
設(shè)M(x1,y1),N(x2,y2),

 

因?yàn)?IMG style="VERTICAL-ALIGN: middle" border=0 src="http://thumb.zyjl.cn/pic1/upload/papers/g02/20111212/201112121454473751649.gif">
所以
 

因?yàn)?IMG style="VERTICAL-ALIGN: middle" border=0 src="http://thumb.zyjl.cn/pic1/upload/papers/g02/20111212/201112121454475781037.gif">,
所以當(dāng)時(shí),取得最小值,
其最小值等于
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年山東省濰坊市三縣高三12月聯(lián)考理科數(shù)學(xué)試卷 題型:解答題

如圖,橢圓C:焦點(diǎn)在軸上,左、右頂點(diǎn)分別為A1、A,上頂點(diǎn)為B.拋物線(xiàn)C1、C:分別以A、B為焦點(diǎn),其頂點(diǎn)均為坐標(biāo)原點(diǎn)O,C1與C2相交于直線(xiàn)上一點(diǎn)P.

 

 

⑴求橢圓C及拋物線(xiàn)C1、C2的方程;

⑵若動(dòng)直線(xiàn)與直線(xiàn)OP垂直,且與橢圓C交于不同兩點(diǎn)M、N,已知點(diǎn)Q(,0),求的最小值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年湖北省武漢市部分重點(diǎn)中學(xué)高三(上)起點(diǎn)考試數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

如圖,橢圓C:焦點(diǎn)在x軸上,左、右頂點(diǎn)分別為A1、A,上頂點(diǎn)為B,拋物線(xiàn)C1、C2分別以A、B為焦點(diǎn),其頂點(diǎn)均為坐標(biāo)原點(diǎn)O.C1與C2相交于直線(xiàn)上一點(diǎn)P.
(Ⅰ)求橢圓C及拋物線(xiàn)C1、C2的方程;
(Ⅱ)若動(dòng)直線(xiàn)l與直線(xiàn)OP垂直,且與橢圓C交于不同兩點(diǎn)M、N,已知點(diǎn),0),求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012年江西省宜春市高考數(shù)學(xué)模擬試卷(文科)(解析版) 題型:解答題

如圖,橢圓C:焦點(diǎn)在x軸上,左、右頂點(diǎn)分別為A1、A,上頂點(diǎn)為B,拋物線(xiàn)C1、C2分別以A、B為焦點(diǎn),其頂點(diǎn)均為坐標(biāo)原點(diǎn)O.C1與C2相交于直線(xiàn)上一點(diǎn)P.
(Ⅰ)求橢圓C及拋物線(xiàn)C1、C2的方程;
(Ⅱ)若動(dòng)直線(xiàn)l與直線(xiàn)OP垂直,且與橢圓C交于不同兩點(diǎn)M、N,已知點(diǎn),0),求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年山東省濰坊市高考數(shù)學(xué)一模試卷(文科)(解析版) 題型:解答題

如圖,橢圓C:焦點(diǎn)在x軸上,左、右頂點(diǎn)分別為A1、A,上頂點(diǎn)為B,拋物線(xiàn)C1、C2分別以A、B為焦點(diǎn),其頂點(diǎn)均為坐標(biāo)原點(diǎn)O.C1與C2相交于直線(xiàn)上一點(diǎn)P.
(Ⅰ)求橢圓C及拋物線(xiàn)C1、C2的方程;
(Ⅱ)若動(dòng)直線(xiàn)l與直線(xiàn)OP垂直,且與橢圓C交于不同兩點(diǎn)M、N,已知點(diǎn),0),求的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案