【題目】如圖,在三棱錐P﹣ABC中,E,F分別為AC,BC的中點.

1)求證:EF∥平面PAB;

2)若平面PAC⊥平面ABC,且PA=PC,∠ABC=90°,求證:平面PEF⊥平面PBC

【答案】見解析

【解析】

試題(1)利用E,F分別是AC,BC的中點,說明EF∥AB,通過直線與平面平行的判定定理直接證明EF∥平面PAB

2)證明PE⊥AC,利用平面與平面垂直的判定定理證明PE⊥平面ABC,通過證明PE⊥BCEF⊥BC,EF∩PE=E,證明BC⊥平面PEF,然后推出平面PEF⊥平面PBC

證明:(1∵E,F分別是ACBC的中點,∴EF∥AB

EF平面PAB

AB平面PAB,

∴EF∥平面PAB

2)在三角形PAC中,∵PA=PC,EAC中點,

∴PE⊥AC

平面PAC⊥平面ABC,

平面PAC∩平面ABC=AC

∴PE⊥平面ABC

∴PE⊥BC

EF∥AB,∠ABC=90°,∴EF⊥BC,

EF∩PE=E,

∴BC⊥平面PEF

平面PEF⊥平面PBC

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形和梯形所在平面互相垂直,,,,,.

(1)求證://平面;

(2)當(dāng)的長為何值時,二面角的大小為.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司生產(chǎn)一種產(chǎn)品,從流水線上隨機抽取100件產(chǎn)品,統(tǒng)計其質(zhì)量指數(shù)并繪制頻率分布直方圖(如圖1):

產(chǎn)品的質(zhì)量指數(shù)在的為三等品,在的為二等品,在的為一等品,該產(chǎn)品的三、二、一等品的銷售利潤分別為每件1.5,3.5,5.5(單位:元),以這100件產(chǎn)品的質(zhì)量指數(shù)位于各區(qū)間的頻率代替產(chǎn)品的質(zhì)量指數(shù)位于該區(qū)間的概率.

(1)求每件產(chǎn)品的平均銷售利潤;

(2)該公司為了解年營銷費用(單位:萬元)對年銷售量(單位:萬件)的影響,對近5年的年營銷費用和年銷售量 數(shù)據(jù)做了初步處理,得到的散點圖(如圖2)及一些統(tǒng)計量的值.

16.30

24.87

0.41

1.64

表中,

根據(jù)散點圖判斷,可以作為年銷售量(萬件)關(guān)于年營銷費用(萬元)的回歸方程.

(ⅰ)建立關(guān)于的回歸方程;

(ⅱ)用所求的回歸方程估計該公司應(yīng)投入多少營銷費,才能使得該產(chǎn)品一年的收益達到最大?(收益=銷售利潤-營銷費用,取

參考公式:對于一組數(shù)據(jù):,,,其回歸直線的斜率和截距的最小乘估計分別為,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在邊長為60 cm的正方形鐵片的四角上切去相等的正方形,再把它沿虛線折起,做成一個無蓋的長方體箱子,箱底的邊長是多少時,箱子的容積最大?最大容積是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)|3x2|.

(1)解不等式f(x)<4|x1|

(2)已知mn1(m,n>0),若|xa|f(x)≤(a>0)恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在三棱錐DABC中,ADDC,ACCB,AB=2AD=2DC=2,且平面ABD平面BCD,E為AC的中點.

(I)證明:ADBC;

(II)求直線 DE 與平面ABD所成的角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖①,已知矩形ABCD滿足AB=5,,沿平行于AD的線段EF向上翻折(點E在線段AB上運動,點F在線段CD上運動),得到如圖②所示的三棱柱.

⑴若圖②中△ABG是直角三角形,這里G是線段EF上的點,試求線段EG的長度x的取值范圍;

⑵若⑴中EG的長度為取值范圍內(nèi)的最大整數(shù),且線段AB的長度取得最小值,求二面角的值;

⑶在⑴與⑵的條件都滿足的情況下,求三棱錐A-BFG的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某品牌經(jīng)銷商在一廣場隨機采訪男性和女性用戶各50名,其中每天玩微信超過6小時的用戶列為“微信控”,否則稱其為“非微信控”,調(diào)查結(jié)果如下:

微信控

非微信控

合計

男性

26

24

50

女性

30

20

50

合計

56

44

100

(1)根據(jù)以上數(shù)據(jù),能否有95%的把握認為“微信控”與“性別”有關(guān)?

(2)現(xiàn)從調(diào)查的女性用戶中按分層抽樣的方法選出5人,求所抽取的5人中“微信控”和“非微信控”的人數(shù);

(3)從(2)中抽取的5位女性中,再隨機抽取3人贈送禮品,試求抽取3人中恰有2人位“微信控”的概率.

參考公式: ,其中.

參考數(shù)據(jù):

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.455

0.708

1.323

2.072

2.706

3.841

5.024

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了反映國民經(jīng)濟各行業(yè)對倉儲物流業(yè)務(wù)的需求變化情況,以及重要商品庫存變化的動向,中國物流與采購聯(lián)合會和中儲發(fā)展股份有限公司通過聯(lián)合調(diào)查,制定了中國倉儲指數(shù).如圖所示的折線圖是2016年1月至2017年12月的中國倉儲指數(shù)走勢情況.

根據(jù)該折線圖,下列結(jié)論正確的是

A. 2016年各月的倉儲指數(shù)最大值是在3月份

B. 2017年1月至12月的倉儲指數(shù)的中位數(shù)為54%

C. 2017年1月至4月的倉儲指數(shù)比2016年同期波動性更大

D. 2017年11月的倉儲指數(shù)較上月有所回落,顯示出倉儲業(yè)務(wù)活動仍然較為活躍,經(jīng)濟運行穩(wěn)中向好

查看答案和解析>>

同步練習(xí)冊答案