【題目】已知函數(shù),,.
(1)求的極值;
(2)若對任意的,當時,恒成立,求實數(shù)的最大值;
(3)若函數(shù)恰有兩個不相等的零點,求實數(shù)的取值范圍.
【答案】(1)的極小值為,無極大值;(2);(3) .
【解析】
(1)求出,判斷其符號,得出的單調(diào)性即可
(2)將變形為,構(gòu)造函數(shù),轉(zhuǎn)化為在恒成立即可
(3)求出,然后分四種情況討論
(1),令,得.
列表如下:
1 | |||
- | 0 | + | |
極小值 |
∵,∴的極小值為,無極大值.
(2)∵,由(1)可知
等價于,
即.
設(shè),則在為增函數(shù).
∴在恒成立.
∴恒成立.
設(shè),∵在上恒成立
∴為增函數(shù).
∴在上的最小值為.
∴,∴的最大值為.
(3)
①當時,當和時,,單調(diào)遞增
當時,,單調(diào)遞減
所以的極大值為
所以函數(shù)至多一個零點
②當時,,在上單調(diào)遞增.
③當時,當和時,,單調(diào)遞增
當時,,單調(diào)遞減
所以的極大值為
的極小值為
所以函數(shù)至多有一個零點.
④當時,當,,單調(diào)遞增
當時,,單調(diào)遞減
所以
Ⅰ:當時,即時,函數(shù)至多一個零點.
Ⅱ:當時,
所以存在,
所以函數(shù)在上有唯一的零點.
又
所以函數(shù)在上有唯一的零點.
綜上所述:實數(shù)的取值范圍為.
科目:高中數(shù)學 來源: 題型:
【題目】某良種培育基地正在培育一種小麥新品種A.將其與原有的一個優(yōu)良品種B進行對照試驗.兩種小麥各種植了25畝,所得畝產(chǎn)數(shù)據(jù)(單位:千克)如下:
品種A:357,359,367,368,375,388,392,399,400,405,412, 414,415,421,423,423,427,430,430,434,443,445,445,451,454
品種B:363,371,374,383,385,386,391,392,394,394,395, 397,397,400,401,401,403,406,407,410,412,415,416,422,430
(1)作出莖葉圖;
(2)通過觀察莖葉圖,對品種A與B的畝產(chǎn)量及其穩(wěn)定性進行比較,寫出統(tǒng)計結(jié)論.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓:的圓心為,圓:的圓心為,一動圓與圓內(nèi)切,與圓外切.
(1)求動圓圓心的軌跡方程;
(2)過點的直線與曲線交于,兩點,點是直線上任意點,直線,,的斜率分別為,,,試探求,,的關(guān)系,并給出證明.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的離心率,左、右焦點分別為、,拋物線的焦點恰好是該橢圓的一個頂點.
(1)求橢圓的方程;
(2)已知圓的切線(直線的斜率存在且不為零)與橢圓相交于、兩點,那么以為直徑的圓是否經(jīng)過定點?如果是,求出定點的坐標;如果不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,曲線的參數(shù)方程為,若曲線與曲線關(guān)于直線對稱.
(1)求曲線的直角坐標方程;
(2)在以為極點,軸的正半軸為極軸的極坐標系中,射線與的異于極點的交點為,與的異于極點的交點為,求.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,點P(x0,y0)在曲線y=x2(x>0)上.已知A(0,-1),,n∈N*.記直線APn的斜率為kn.
(1)若k1=2,求P1的坐標;
(2)若k1為偶數(shù),求證:kn為偶數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,已知橢圓的左焦點為,點在橢圓上.
(1)求橢圓的方程;
(2)已知圓,連接并延長交圓于點為橢圓長軸上一點(異于左、右焦點),過點作橢圓長軸的垂線分別交橢圓和圓于點(均在軸上方).連接,記的斜率為,的斜率為.
①求的值;
②求證:直線的交點在定直線上.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓:,四點,,,中恰有三點在橢圓上.
(1)求的方程;
(2)設(shè)的短軸端點分別為,,直線:交于,兩點,交軸于點,若,求實數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,雙曲線的右頂點為A,右焦點為F,點B在雙曲線的右支上,矩形OFBD與矩形AEGF相似,且矩形OFBD與矩形AEGF的面積之比為2:1,則該雙曲線的離心率為
A.
B.
C.
D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com