【題目】改革開(kāi)放以來(lái),人們的支付方式發(fā)生了巨大轉(zhuǎn)變.近年來(lái),移動(dòng)支付已成為主要支付方式之一.為了解某校學(xué)生上個(gè)月A,B兩種移動(dòng)支付方式的使用情況,從全校所有的1000名學(xué)生中隨機(jī)抽取了100人,發(fā)現(xiàn)樣本中A,B兩種支付方式都不使用的有5人,樣本中僅使用A和僅使用B的學(xué)生的支付金額分布情況如下:
支付金額 支付方式 | 不大于2000元 | 大于2000元 |
僅使用A | 27人 | 3人 |
僅使用B | 24人 | 1人 |
(Ⅰ)估計(jì)該校學(xué)生中上個(gè)月A,B兩種支付方式都使用的人數(shù);
(Ⅱ)從樣本僅使用B的學(xué)生中隨機(jī)抽取1人,求該學(xué)生上個(gè)月支付金額大于2000元的概率;
(Ⅲ)已知上個(gè)月樣本學(xué)生的支付方式在本月沒(méi)有變化.現(xiàn)從樣本僅使用B的學(xué)生中隨機(jī)抽查1人,發(fā)現(xiàn)他本月的支付金額大于2000元.結(jié)合(Ⅱ)的結(jié)果,能否認(rèn)為樣本僅使用B的學(xué)生中本月支付金額大于2000元的人數(shù)有變化?說(shuō)明理由.
【答案】(Ⅰ)400人;
(Ⅱ);
(Ⅲ)見(jiàn)解析.
【解析】
(Ⅰ)由題意利用頻率近似概率可得滿足題意的人數(shù);
(Ⅱ)利用古典概型計(jì)算公式可得上個(gè)月支付金額大于2000元的概率;
(Ⅲ)結(jié)合概率統(tǒng)計(jì)相關(guān)定義給出結(jié)論即可.
(Ⅰ)由圖表可知僅使用A的人數(shù)有30人,僅使用B的人數(shù)有25人,
由題意知A,B兩種支付方式都不使用的有5人,
所以樣本中兩種支付方式都使用的有,
所以全校學(xué)生中兩種支付方式都使用的有(人).
(Ⅱ)因?yàn)闃颖局袃H使用B的學(xué)生共有25人,只有1人支付金額大于2000元,
所以該學(xué)生上個(gè)月支付金額大于2000元的概率為.
(Ⅲ)由(Ⅱ)知支付金額大于2000元的概率為,
因?yàn)閺膬H使用B的學(xué)生中隨機(jī)調(diào)查1人,發(fā)現(xiàn)他本月的支付金額大于2000元,
依據(jù)小概率事件它在一次試驗(yàn)中是幾乎不可能發(fā)生的,所以可以認(rèn)為僅使用B的學(xué)生中本月支付金額大于2000元的人數(shù)有變化,且比上個(gè)月多.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程:
已知極坐標(biāo)系的極點(diǎn)在直角坐標(biāo)系的原點(diǎn),極軸與x軸非負(fù)半軸重合,直線l的參數(shù)方程為:(t為參數(shù),a∈[0,π),曲線C的極坐標(biāo)方程為:p=2cosθ.
(Ⅰ)寫(xiě)出曲線C在直角坐標(biāo)系下的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)直線l與曲線C相交PQ兩點(diǎn),若|PQ|,求直線l的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線:經(jīng)過(guò)點(diǎn),直線分別與拋物線交于點(diǎn),若直線的斜率之和為零,則直線的斜率為_________。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)的圖像相鄰兩條對(duì)稱軸間的距離為,且,則以下命題中為假命題的是( )
A.函數(shù)在上是增函數(shù).
B.函數(shù)圖像關(guān)于點(diǎn)對(duì)稱
C.函數(shù)的圖象可由的圖象向左平移個(gè)單位長(zhǎng)度得到
D.函數(shù)的圖象關(guān)于直線對(duì)稱
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(I)已知函數(shù)在點(diǎn)處的切線與直線垂直,求的值;
(Ⅱ)若函數(shù)在上無(wú)零點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下表提供了工廠技術(shù)改造后某種型號(hào)設(shè)備的使用年限x和所支出的維修費(fèi)y(萬(wàn)元)的幾組對(duì)照數(shù)據(jù):
x(年) | 2 | 3 | 4 | 5 | 6 |
y(萬(wàn)元) | 1 | 2.5 | 3 | 4 | 4.5 |
(1)若知道y對(duì)x呈線性相關(guān)關(guān)系,請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程;
(2)已知該工廠技術(shù)改造前該型號(hào)設(shè)備使用10年的維修費(fèi)用為9萬(wàn)元,試根據(jù)(1)求出的線性回歸方程,預(yù)測(cè)該型號(hào)設(shè)備技術(shù)改造后,使用10年的維修費(fèi)用能否比技術(shù)改造前降低?
參考公式:,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為.
(1)求直線與曲線公共點(diǎn)的極坐標(biāo);
(2)設(shè)過(guò)點(diǎn)的直線交曲線于,兩點(diǎn),且的中點(diǎn)為,求直線的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱柱ABC-A1B1C1中,側(cè)面B1BCC1是正方形,M,N分別是A1B1,AC的中點(diǎn),AB⊥平面BCM.
(Ⅰ)求證:平面B1BCC1⊥平面A1ABB1;
(Ⅱ)求證:A1N∥平面BCM;
(Ⅲ)若三棱柱ABC-A1B1C1的體積為10,求棱錐C1-BB1M的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),則以下結(jié)論正確的是( )
A.函數(shù)的單調(diào)減區(qū)間是
B.函數(shù)有且只有1個(gè)零點(diǎn)
C.存在正實(shí)數(shù),使得成立
D.對(duì)任意兩個(gè)正實(shí)數(shù),,且,若則
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com