【題目】已知圓的方程為.
(I)若點在圓的外部,求的取值范圍;
(II)當時,是否存在斜率為的直線,使以被圓截得的弦為直徑所作的圓過原點?若存在,求出的方程;若不存在,說明理由.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=,
①若f(a)=14,求a的值
②在平面直角坐標系中,作出函數(shù)y=f(x)的草圖.(需標注函數(shù)圖象與坐標軸交點處所表示的實數(shù))
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某單位決定投資3200元建一倉庫(長方體狀),高度恒定,它的后墻利用舊墻不花錢,正面用鐵柵,每米長造價40元,兩側墻砌磚,每米長造價45元,頂部每平方米造價20元。
(1)設鐵柵長為米,一堵磚墻長為米,求函數(shù)的解析式;
(2)為使倉庫總面積達到最大,正面鐵柵應設計為多長?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),其中為常數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)若存在兩個極值點,求證:無論實數(shù)取什么值都有.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)的最小值為,且.
(1)求的解析式;
(2)若在區(qū)間上不單調(diào),求實數(shù)的取值范圍;
(3)在區(qū)間上,的圖象恒在的圖象上方,試確定實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某研究性學習小組對春季晝夜溫差大小與某花卉種子發(fā)芽多少之間的關系進行研究,他們分別記錄了3月1日至3月5日的每天晝夜溫差與實驗室每天每100顆種子浸泡后的發(fā)芽數(shù),得到如下資料:
(1)從3月1日至3月5日中任選2天,記發(fā)芽的種子數(shù)分別為,求事件“均小于25”的概率;
(2)請根據(jù)3月2日至3月4日的數(shù)據(jù),求出關于的線性回歸方程.
(參考公式:回歸直線方程為,其中, )
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】對某電子元件進行壽命追蹤調(diào)查,所得情況如右頻率分布直方圖.
(1)圖中縱坐標處刻度不清,根據(jù)圖表所提供的數(shù)據(jù)還原;
(2)根據(jù)圖表的數(shù)據(jù)按分層抽樣,抽取個元件,壽命為之間的應抽取幾個;
(3)從(2)中抽出的壽命落在之間的元件中任取個元件,求事件“恰好有一個壽命為,一個壽命為”的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2017年天貓五一活動結束后,某地區(qū)研究人員為了研究該地區(qū)在五一活動中消費超過3000元的人群的年齡狀況,隨機在當?shù)叵M超過3000元的群眾中抽取了500人作調(diào)查,所得概率分布直方圖如圖所示:記年齡在, , 對應的小矩形的面積分別是,且.
(1)以頻率作為概率,若該地區(qū)五一消費超過3000元的有30000人,試估計該地區(qū)在五一活動中消費超過3000元且年齡在的人數(shù);
(2)計算在五一活動中消費超過3000元的消費者的平均年齡;
(3)若按照分層抽樣,從年齡在, 的人群中共抽取7人,再從這7人中隨機抽取2人作深入調(diào)查,求至少有1人的年齡在內(nèi)的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某公司過去五個月的廣告費支出與銷售額(單位:萬元)之間有下列對應數(shù)據(jù):
2 | 4 | 5 | 6 | 8 | |
40 | 60 | 50 | 70 |
工作人員不慎將表格中的第一個數(shù)據(jù)丟失.已知對呈線性相關關系,且回歸方程為,則下列說法:①銷售額與廣告費支出正相關;②丟失的數(shù)據(jù)(表中處)為30;③該公司廣告費支出每增加1萬元,銷售額一定增加萬元;④若該公司下月廣告投入8萬元,則銷售
額為70萬元.其中,正確說法有( )
A.1個 B.2個 C.3個 D.4個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com