【題目】已知橢圓的右焦點(diǎn)為,且點(diǎn)在橢圓C上.

(1)求橢圓C的標(biāo)準(zhǔn)方程;

(2)過橢圓上異于其頂點(diǎn)的任意一點(diǎn)Q作圓的兩條切線,切點(diǎn)分別為不在坐標(biāo)軸上),若直線x軸,y軸上的截距分別為,證明:為定值;

(3)若是橢圓上不同兩點(diǎn),軸,圓E,且橢圓上任意一點(diǎn)都不在圓E內(nèi),則稱圓E為該橢圓的一個(gè)內(nèi)切圓,試問:橢圓是否存在過焦點(diǎn)F的內(nèi)切圓?若存在,求出圓心E的坐標(biāo);若不存在,請(qǐng)說明理由.

【答案】(1);(2)證明見解析;(3).

【解析】

(1)由焦點(diǎn)坐標(biāo)確定出c的值,根據(jù)橢圓的性質(zhì)列出ab的方程,再將P點(diǎn)坐標(biāo)代入橢圓方程列出關(guān)于ab的方程,聯(lián)立求出ab的值,確定出橢圓方程即可.

(2)由題意:確定出C1的方程,設(shè)點(diǎn)Px1,y1),Mx2,y2),Nx3,y3),根據(jù)M,N不在坐標(biāo)軸上,得到直線PM與直線OM斜率乘積為﹣1,確定出直線PM的方程,同理可得直線PN的方程,進(jìn)而確定出直線MN方程,求出直線MNx軸,y軸截距mn,即可確定出所求式子的值為定值.

(3)依題意可得符合要求的圓E,即為過點(diǎn)F,P1,P2的三角形的外接圓.所以圓心在x軸上.根據(jù)題意寫出圓E的方程.由于圓的存在必須要符合,橢圓上的點(diǎn)到圓E距離的最小值是|P1E|,結(jié)合圖形可得圓心E在線段P1P2上,半徑最。钟捎邳c(diǎn)F已知,即可求得結(jié)論.

(1)∵橢圓C的右焦點(diǎn)為F(1,0),且點(diǎn)P(1,)在橢圓C上;

,解得a=2,b

∴橢圓C的標(biāo)準(zhǔn)方程為

(2)由題意:C1,

設(shè)點(diǎn)Px1y1),Mx2,y2),Nx3y3),

M,N不在坐標(biāo)軸上,∴kPM=﹣=﹣

∴直線PM的方程為yy2=﹣xx2),

化簡得:x2x+y2y,①,

同理可得直線PN的方程為x3x+y3y,②,

P點(diǎn)的坐標(biāo)代入①、②得,

∴直線MN的方程為x1x+y1y

y=0,得m,令x=0得n,

x1,y1,

又點(diǎn)P在橢圓C1上,

∴(2+3(2=4,

為定值.

(3)由橢圓的對(duì)稱性,可以設(shè)P1m,n),P2m,﹣n),點(diǎn)Ex軸上,設(shè)點(diǎn)Et,0),

則圓E的方程為:(xt2+y2=(mt2+n2

由內(nèi)切圓定義知道,橢圓上的點(diǎn)到點(diǎn)E距離的最小值是|P1E|,

設(shè)點(diǎn)Mx,y)是橢圓C上任意一點(diǎn),則|ME|2=(xt2+y2,

當(dāng)xm時(shí),|ME|2最小,∴m=﹣,③,

又圓E過點(diǎn)F,∴(﹣2=(mt2+n2,④

點(diǎn)P1在橢圓上,∴,⑤

由③④⑤,解得:t=﹣t=﹣

t=﹣時(shí),m=﹣<﹣2,不合題意,

綜上:橢圓C存在符合條件的內(nèi)切圓,點(diǎn)E的坐標(biāo)是(﹣,0).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=lg ,f(1)=0,當(dāng)x>0時(shí),恒有f(x)=lgx.

(1)若不等式f(x)≤lgt的解集為A,且A(0,4],求實(shí)數(shù)t的取值范圍;

(2)若方程f(x)=lg(8x+m)的解集為,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)對(duì)任意的滿足:,當(dāng)時(shí),

1)求出函數(shù)在R上零點(diǎn);

2)求滿足不等式的實(shí)數(shù)的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)討論函數(shù)的極值點(diǎn)的個(gè)數(shù);

2)若有兩個(gè)極值點(diǎn),證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了在夏季降溫和冬季供暖時(shí)減少能源損耗,房屋的屋頂和外墻需要建造隔熱層。某幢建筑物要建造可使用20年的隔熱層,每厘米厚的隔熱層建造成本為6萬元。該建筑物每年的能源消耗費(fèi)用C(單位:萬元)與隔熱層厚度x(單位:cm)滿足關(guān)系:Cx=若不建隔熱層,每年能源消耗費(fèi)用為8萬元。設(shè)fx)為隔熱層建造費(fèi)用與20年的能源消耗費(fèi)用之和。

)求k的值及f(x)的表達(dá)式。

)隔熱層修建多厚時(shí),總費(fèi)用f(x)達(dá)到最小,并求最小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】20191118日國際射聯(lián)步手槍世界杯總決賽在莆田市綜合體育館開幕,這是國際射聯(lián)步手槍世界杯總決賽時(shí)隔10年再度走進(jìn)中國.為了增強(qiáng)趣味性,并實(shí)時(shí)播報(bào)現(xiàn)場賽況,我校現(xiàn)場小記者李明和播報(bào)小記者王華設(shè)計(jì)了一套播報(bào)轉(zhuǎn)碼法,發(fā)送方由明文密文(加密),接受方由密文明文(解密),已知加密的方法是:密碼把英文的明文(真實(shí)文)按字母分解,其中英文的26個(gè)字母(不論大小寫)依次對(duì)應(yīng)1,23,,2626個(gè)自然數(shù)通過變換公式:,將明文轉(zhuǎn)換成密文,如,即變換成,即變換成.若按上述規(guī)定,若王華收到的密文是,那么原來的明文是(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,點(diǎn)A為該橢圓的左頂點(diǎn),過右焦點(diǎn)的直線l與橢圓交于B,C兩點(diǎn),當(dāng)軸時(shí),三角形ABC的面積為18

求橢圓的方程;

如圖,當(dāng)動(dòng)直線BC斜率存在且不為0時(shí),直線分別交直線AB,AC于點(diǎn)MN,問x軸上是否存在點(diǎn)P,使得,若存在求出點(diǎn)P的坐標(biāo);若不存在說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】每年六、七月份,我國長江中下游地區(qū)進(jìn)入持續(xù)25天左右的梅雨季節(jié),如圖是江南某地區(qū)10年間梅雨季節(jié)的降雨量單位:的頻率分布直方圖,試用樣本頻率估計(jì)總體概率,解答下列問題:

假設(shè)每年的梅雨季節(jié)天氣相互獨(dú)立,求該地區(qū)未來三年里至少有兩年梅雨季節(jié)的降雨量超過350mm的概率.

老李在該地區(qū)承包了20畝土地種植楊梅,他過去種植的甲品種楊梅,平均每年的總利潤為28萬元而乙品種楊梅的畝產(chǎn)量與降雨量之間的關(guān)系如下面統(tǒng)計(jì)表所示,又知乙品種楊梅的單位利潤為,請(qǐng)你幫助老李分析,他來年應(yīng)該種植哪個(gè)品種的楊梅可以使總利潤萬元的期望更大?并說明理由.

降雨量

畝產(chǎn)量

500

700

600

400

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】自由購是一種通過自助結(jié)算購物的形式.某大型超市為調(diào)查顧客自由購的使用情況,隨機(jī)抽取了100人,調(diào)查結(jié)果整理如下:

20以下

[20,30

[3040

[40,50

[5060

[60,70]

70以上

使用人數(shù)

3

12

17

6

4

2

0

未使用人數(shù)

0

0

3

14

36

3

0

1)現(xiàn)隨機(jī)抽取1名顧客,試估計(jì)該顧客年齡在[30,50)且未使用自由購的概率;

2)從被抽取的年齡在[50,70]使用的自由購顧客中,隨機(jī)抽取2人進(jìn)一步了解情況,求這2人年齡都在[50,60)的概率;

3)為鼓勵(lì)顧客使用自由購,該超市擬對(duì)使用自由購顧客贈(zèng)送1個(gè)環(huán)保購物袋.若某日該超市預(yù)計(jì)有5000人購物,試估計(jì)該超市當(dāng)天至少應(yīng)準(zhǔn)備多少個(gè)環(huán)保購物袋?

查看答案和解析>>

同步練習(xí)冊(cè)答案