(06年江西卷理)(12分)
如圖,在三棱錐A-BCD中,側(cè)面ABD、ACD
是全等的直角三角形,AD是公共的斜邊,
且AD=,BD=CD=1,另一個(gè)側(cè)面是正三角形
(1)求證:AD^BC
(2)求二面角B-AC-D的大小
(3)在直線AC上是否存在一點(diǎn)E,使ED與面BCD
成30°角?若存在,確定E的位置;若不存在,說明理由。
解析:解法一:
(1)方法一:作AH^面BCD于H,連DH。
AB^BDÞHB^BD,又AD=,BD=1
\AB==BC=AC \BD^DC
又BD=CD,則BHCD是正方形,則DH^BC\AD^BC
方法二:取BC的中點(diǎn)O,連AO、DO
則有AO^BC,DO^BC,\BC^面AOD
\BC^AD
(2)作BM^AC于M,作MN^AC交AD于N,則ÐBMN就是二面角B-AC-D的平面角,因?yàn)锳B=AC=BC=\M是AC的中點(diǎn),且MN¤¤CD,則BM=,MN=CD=,BN=AD=,由余弦定理可求得cosÐBMN=
\ÐBMN=arccos
(3)設(shè)E是所求的點(diǎn),作EF^CH于F,連FD。則EF¤¤AH,\EF^面BCD,ÐEDF就是ED與面BCD所成的角,則ÐEDF=30°。設(shè)EF=x,易得AH=HC=1,則CF=x,F(xiàn)D=,\tanÐEDF===解得x=,則CE=x=1
故線段AC上存在E點(diǎn),且CE=1時(shí),ED與面BCD成30°角。
解法二:此題也可用空間向量求解,解答略
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
(06年江西卷理)如圖,在四面體ABCD中,截面AEF經(jīng)過四面體的內(nèi)切球(與四個(gè)面都相切的球)球心O,且與BC,DC分別截于E、F,如果截面將四面體分成體積相等的兩部分,設(shè)四棱錐A-BEFD與三棱錐A-EFC的表面積分別是S1,S2,則必有( )
A.S1<S2 B.S1>S
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(06年江西卷理)如圖,在直三棱柱ABC-A1B1C1中,底面為直角三角形,ÐACB=90°,AC=6,BC=CC1=,P是BC1上一動(dòng)點(diǎn),則CP+PA1的最小值是___________
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(06年江西卷理)(12分)
如圖,已知△ABC是邊長為1的正三角形,M、N分別是
邊AB、AC上的點(diǎn),線段MN經(jīng)過△ABC的中心G,
設(shè)ÐMGA=a()
(1)試將△AGM、△AGN的面積(分別記為S1與S2)表示為a的函數(shù)
(2)求y=的最大值與最小值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(06年江西卷理)(12分)
如圖,橢圓Q:(a>b>0)的右焦點(diǎn)F(c,0),過點(diǎn)F的一動(dòng)直線m繞點(diǎn)F轉(zhuǎn)動(dòng),并且交橢圓于A、B兩點(diǎn),P是線段AB的中點(diǎn)
(1)求點(diǎn)P的軌跡H的方程
(2)在Q的方程中,令a2=1+cosq+sinq,b2=sinq(0<q£ ),確定q的值,使原點(diǎn)距橢圓的右準(zhǔn)線l最遠(yuǎn),此時(shí),設(shè)l與x軸交點(diǎn)為D,當(dāng)直線m繞點(diǎn)F轉(zhuǎn)動(dòng)到什么位置時(shí),三角形ABD的面積最大?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com