【題目】2020年春,新型冠狀病毒在我國(guó)湖北武漢爆發(fā)并訊速蔓延,病毒傳染性強(qiáng)并嚴(yán)重危害人民生命安全,國(guó)家衛(wèi)健委果斷要求全體人民自我居家隔離,為支援湖北武漢新型冠狀病毒疫情防控工作,各地醫(yī)護(hù)人員紛紛逆行,才使得病毒蔓延得到了有效控制.某社區(qū)為保障居民的生活不受影響,由社區(qū)志愿者為其配送蔬菜、大米等生活用品,記者隨機(jī)抽查了男、女居民各100名對(duì)志愿者所買(mǎi)生活用品滿意度的評(píng)價(jià),得到下面的2×2列聯(lián)表.

特別滿意

基本滿意

80

20

95

5

1)被調(diào)查的男性居民中有5個(gè)年輕人,其中有2名對(duì)志愿者所買(mǎi)生活用品特別滿意,現(xiàn)在這5名年輕人中隨機(jī)抽取3人,求至多有1人特別滿意的概率.

2)能否有99%的把握認(rèn)為男、女居民對(duì)志愿者所買(mǎi)生活用品的評(píng)價(jià)有差異?

附:

【答案】12)有99%的把握認(rèn)為男、女居民對(duì)志愿者所買(mǎi)生活用品的評(píng)價(jià)有差異

【解析】

(1)設(shè)這5個(gè)年輕人為,其中特別滿意的2人記為,列出所有的基本事件情況和滿足3人中至多1人特別滿意的情況即可

2)算出即可

(1)設(shè)這5個(gè)年輕人為,其中特別滿意的2人為

則任取3人的基本事件為:

,共10

其中3人中至多1人特別滿意的事件有:

,共7

所以至多1人特別滿意的概率為

2

則有99%的把握認(rèn)為男、女居民對(duì)志愿者所買(mǎi)生活用品的評(píng)價(jià)有差異

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),,其中.

1)求函數(shù)的單調(diào)區(qū)間;

2)若對(duì)任意,任意,不等式恒成立時(shí)最大的記為,當(dāng)時(shí),的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),.

(1)當(dāng) 時(shí),求函數(shù)圖象在點(diǎn)處的切線方程;

(2)當(dāng)時(shí),討論函數(shù)的單調(diào)性;

(3)是否存在實(shí)數(shù),對(duì)任意恒成立?若存在,求出的取值范圍;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),為曲線上一動(dòng)點(diǎn),動(dòng)點(diǎn)滿足.

1)求點(diǎn)軌跡的直角坐標(biāo)方程;

2)以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,上一個(gè)動(dòng)點(diǎn),求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線與直線互相垂直,且交點(diǎn)為Q,點(diǎn),線段QF的垂直平分線與直線交于點(diǎn)P

I)若動(dòng)點(diǎn)P的軌跡為曲線E,求曲線E的方程;

(Ⅱ)已知點(diǎn),經(jīng)過(guò)點(diǎn)M的兩條直線分別與曲線E交于A,BCD,且,設(shè)直線ACBD的斜率分別為,是否存在常數(shù),使得當(dāng)變動(dòng)時(shí),?說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C的離心率為的面積為2.

(I)求橢圓C的方程;

(II)設(shè)M是橢圓C上一點(diǎn),且不與頂點(diǎn)重合,若直線與直線交于點(diǎn)P,直線與直線交于點(diǎn)Q.求證:BPQ為等腰三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)若恒成立,求實(shí)數(shù)的取值范圍;

2)求證:時(shí),.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程為t為參數(shù)),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C1的極坐標(biāo)方程為,曲線C2的直角坐標(biāo)方程為.

1)若直線l與曲線C1交于M、N兩點(diǎn),求線段MN的長(zhǎng)度;

2)若直線lx軸,y軸分別交于A、B兩點(diǎn),點(diǎn)P在曲線C2上,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)數(shù)列,規(guī)定為數(shù)列的一階差分?jǐn)?shù)列,其中,規(guī)定的二階差分?jǐn)?shù)列,其中.

1)數(shù)列的通項(xiàng)公式,試判斷,是否為等差數(shù)列,請(qǐng)說(shuō)明理由?

2)數(shù)列是公比為的正項(xiàng)等比數(shù)列,且,對(duì)于任意的,都存在,使得,求所有可能的取值構(gòu)成的集合;

3)各項(xiàng)均為正數(shù)的數(shù)列的前項(xiàng)和為,且,對(duì)滿足的任意正整數(shù)、,都有,且不等式恒成立,求實(shí)數(shù)的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案