如圖,在直三棱柱中,底面為等腰直角三角形,,為棱上一點(diǎn),且平面平面.

(Ⅰ)求證:點(diǎn)為棱的中點(diǎn);

(Ⅱ)判斷四棱錐的體積是否相等,并證明。

【解析】本試題主要考查了立體幾何中的體積問題的運(yùn)用。第一問中,

易知,。由此知:從而有又點(diǎn)的中點(diǎn),所以,所以點(diǎn)為棱的中點(diǎn).

(2)中由A1B1⊥平面B1C1CD,BC⊥平面A1ABD,D為BB1中點(diǎn),可以得證。

(1)過點(diǎn)點(diǎn),取的中點(diǎn),連。且相交于,面內(nèi)的直線,!3分

且相交于,且為等腰三角形,易知。由此知:,從而有共面,又易知,故有從而有又點(diǎn)的中點(diǎn),所以,所以點(diǎn)為棱的中點(diǎn).               …6分

(2)相等.ABC-A1B1C1為直三棱柱,∴BB1⊥A1B1,BB1⊥BC,又A1B1⊥B1C1,BC⊥AB,

∴A1B1⊥平面B1C1CD,BC⊥平面A1ABD(9分)∴VA1-B1C1CD=1 /3 SB1C1CD•A1B1=1/ 3 ×1 2 (B1D+CC1)×B1C1×A1B1VC-A1ABD=1 /3 SA1ABD•BC=1 /3 ×1 2 (BD+AA1)×AB×BC∵D為BB1中點(diǎn),∴VA1-B1C1CD=VC-A1ABD

 

【答案】

 

(1)點(diǎn)為棱的中點(diǎn).              (2)相等.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在直三棱柱中,∠ACB=90°,AC=BC=1,側(cè)棱AA1=
2
,M為A1B1的中點(diǎn),則AM與平面AA1C1C所成角的正切值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013屆廣東省高二下期中理科數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,在直三棱柱中, AB=1,

∠ABC=60.

(1)證明:;

(2)求二面角A——B的正切值。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年天津市高三第二次月考文科數(shù)學(xué) 題型:解答題

(本小題滿分13分)如圖,在直三棱柱中,,分別為的中點(diǎn),四邊形是邊長為的正方形.

(Ⅰ)求證:平面;

(Ⅱ)求證:平面

(Ⅲ)求二面角的余弦值.

 

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年四川省高三2月月考理科數(shù)學(xué) 題型:解答題

如圖,在直三棱柱中,,,的中點(diǎn).

(Ⅰ)求證:∥平面;

(Ⅱ)求二面角的余弦值;

(Ⅲ)試問線段上是否存在點(diǎn),使 角?若存在,確定點(diǎn)位置,若不存在,說明理由.

 

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013屆云南省高二9月月考數(shù)學(xué)試卷 題型:解答題

如圖,在直三棱柱中,,點(diǎn)的中點(diǎn).

求證:(1);(2)平面.

 

 

 

查看答案和解析>>

同步練習(xí)冊(cè)答案