【題目】如圖,在四棱錐中,平面,正方形邊長(zhǎng)為2,的中點(diǎn).

1)求證:平面

2)求證:直線與平面所成角的正弦值為,求的長(zhǎng)度;

3)若,線段上是否存在一點(diǎn),使平面,若存在求的長(zhǎng)度,若不存在則說(shuō)明.

【答案】1)證明見(jiàn)解析;(2)證明見(jiàn)解析,24;(3)存在,

【解析】

1)以為原點(diǎn)建立空間直角坐標(biāo)系,求出,平面法向量,利用,即可證出.

2)求出平面法向量,由,利用空間向量的數(shù)量積即可求解.

3)假設(shè)存在,設(shè),由(1)平面法向量,,由向量共線可得,解方程即可求解.

(1)由平面平面,所以,

因?yàn)?/span>為正方形,所以,

所以平面.

如圖以為原點(diǎn)建立空間直角坐標(biāo)系

,,,

,

設(shè)平面法向量為

,

平面,平面

2)設(shè)平面法向量為

,,

,令,

,設(shè)直線與平面所成角為

解得4,所以長(zhǎng)為4

3)存在,,,,,

,,

解得.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}的各項(xiàng)均為正數(shù),其前n項(xiàng)和Sn滿足4Snan2+2annN*.設(shè)bn=(﹣1nanan+1,Tn為數(shù)列{bn}的前n項(xiàng)和,則T2n_____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C)的焦距為4,其短軸的兩個(gè)端點(diǎn)與長(zhǎng)軸的一個(gè)端點(diǎn)構(gòu)成正三角形.

1)求橢圓C的標(biāo)準(zhǔn)方程;

2)設(shè)F為橢圓C的左焦點(diǎn),T為直線上任意一點(diǎn),過(guò)FTF的垂線交橢圓C于點(diǎn)P,Q.

i)證明:OT平分線段PQ(其中O為坐標(biāo)原點(diǎn));

ii)當(dāng)最小時(shí),求點(diǎn)T的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)有兩個(gè)不同的極值點(diǎn).

1)求的取值范圍.

2)求的極大值與極小值之和的取值范圍.

3)若,則是否有最小值?若有,求出最小值;若沒(méi)有,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知為拋物線上的一點(diǎn),,為拋物線上異于點(diǎn)的兩點(diǎn),且直線的斜率與直線的斜率互為相反數(shù).

1)求直線的斜率;

2)設(shè)直線過(guò)點(diǎn)并交拋物線于,兩點(diǎn),且,直線軸交于點(diǎn),試探究的夾角是否為定值,若是則求出定值,若不是,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】正四棱錐PABCD的底面邊長(zhǎng)為2,側(cè)棱長(zhǎng)為2,過(guò)點(diǎn)A作一個(gè)與側(cè)棱PC垂直的平面α,則平面α被此正四棱錐所截的截面面積為_____,平面α將此正四棱錐分成的兩部分體積的比值為_____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)AB的坐標(biāo)分別是(,0),(,0),動(dòng)點(diǎn)Mx,y)滿足直線AMBM的斜率之積為﹣3,記M的軌跡為曲線E

1)求曲線E的方程;

2)直線ykx+m與曲線E相交于P,Q兩點(diǎn),若曲線E上存在點(diǎn)R,使得四邊形OPRQ為平行四邊形(其中O為坐標(biāo)原點(diǎn)),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2020年是我國(guó)垃圾分類逐步凸顯效果關(guān)鍵的一年.在國(guó)家高度重視,重拳出擊的前提下,高強(qiáng)度、高頻率的宣傳教育能有效縮短我國(guó)生活垃圾分類走入世界前列所需的時(shí)間,打好垃圾分類這場(chǎng)持久戰(zhàn),全民戰(zhàn)”.某市做了一項(xiàng)調(diào)查,在一所城市中學(xué)和一所縣城中學(xué)隨機(jī)各抽取15名學(xué)生,對(duì)垃圾分類知識(shí)進(jìn)行問(wèn)答,滿分為100分,他們所得成績(jī)?nèi)缦拢?/span>

城市中學(xué)學(xué)生成績(jī)分別為:73 71 83 86 92 70 88 93 73 97 87 88 74 86 85

縣城中學(xué)學(xué)生成績(jī)分別為:60 64 71 91 60 76 72 85 81 72 62 74 73 63 72

1)根據(jù)上述兩組數(shù)據(jù)在圖中完成兩所中學(xué)學(xué)生成績(jī)的莖葉圖,并通過(guò)莖葉圖比較兩所中學(xué)學(xué)生成績(jī)的平均分及分散程度;(不要求計(jì)算出具體值,給出結(jié)論即可)

2)從城市中學(xué)成績(jī)?cè)?/span>80分以上的學(xué)生中抽取4名,記這4名學(xué)生的成績(jī)?cè)?/span>90分以上的人數(shù)為X,求X的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】今年,新型冠狀病毒來(lái)勢(shì)兇猛,老百姓一時(shí)間談毒色變,近來(lái),有關(guān)喝白酒可以預(yù)防病毒的說(shuō)法一直在民間流傳,更有人拿出醫(yī)字的繁體字醫(yī)進(jìn)行解讀為:醫(yī)治瘟疫要喝酒,為了調(diào)查喝白酒是否有助于預(yù)防病毒,我們調(diào)查了1000人的喝酒生活習(xí)慣與最終是否得病進(jìn)行了統(tǒng)計(jì),表格如下:

每周喝酒量(兩)

人數(shù)

100

300

450

100

規(guī)定:①每周喝酒量達(dá)到4兩的叫常喝酒人,反之叫不常喝酒人;

②每周喝酒量達(dá)到8兩的叫有酒癮的人.

1)求值,從每周喝酒量達(dá)到6兩的人中按照分層抽樣選出6人,再?gòu)倪@6人中選出2人,求這2人中無(wú)有酒癮的人的概率;

2)請(qǐng)通過(guò)上述表格中的統(tǒng)計(jì)數(shù)據(jù),填寫(xiě)完下面的列聯(lián)表,并通過(guò)計(jì)算判斷是否能在犯錯(cuò)誤的概率不超過(guò)0.1的前提下認(rèn)為是否得病與是否常喝酒有關(guān)?并對(duì)民間流傳的說(shuō)法做出你的判斷.

常喝酒

不常喝酒

合計(jì)

得病

不得病

250

650

合計(jì)

參考公式:,其中

0.100

0.050

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

同步練習(xí)冊(cè)答案