【題目】如圖,關(guān)于正方體ABCD﹣A1B1C1D1 , 下面結(jié)論錯誤的是( )
A.BD⊥平面ACC1A1
B.AC⊥BD
C.A1B∥平面CDD1C1
D.該正方體的外接球和內(nèi)接球的半徑之比為2:1
【答案】D
【解析】解:由正方體ABCD﹣A1B1C1D1 , 知: 在A中,∵BD⊥AC,BD⊥AA1 , AC∩AA1=A,∴BD⊥平面ACC1A1 , 故A正確;
在B中,∵ABCD是正方形,∴AC⊥BD,故B正確;
在C中,∵A1B∥D1C,A1B平面CDD1C1 , D1C平面CDD1C1 , 故A1B∥平面CDD1C1 , 故C正確;
在D中,該正方體的外接球和內(nèi)接球的半徑之比為 = :1.故D錯誤.
故選:D.
在A中,由BD⊥AC,BD⊥AA1 , 知BD⊥平面ACC1A1;在B中,由ABCD是正方形,知AC⊥BD;在C中,由A1B∥D1C,知A1B∥平面CDD1C1;在D中,該正方體的外接球和內(nèi)接球的半徑之比為 :1.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ) 當(dāng)a=0時,求曲線f(x)在x =1處的切線方程;
(Ⅱ) 設(shè)函數(shù),求函數(shù)h(x)的極值;
(Ⅲ) 若在[1,e](e=2.718 28…)上存在一點x0,使得成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】橢圓C焦點在y軸上,離心率為 ,上焦點到上頂點距離為2﹣ .
(1)求橢圓C的標(biāo)準方程;
(2)直線l與橢圓C交與P,Q兩點,O為坐標(biāo)原點,△OPQ的面積S△OPQ=1,則| |2+| |2是否為定值,若是求出定值;若不是,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=cos4x﹣2sinxcosx﹣sin4x.
(1)求f(x)的最小正周期;
(2)求f(x)的單調(diào)增區(qū)間;
(3)若 ,求f(x)的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下列結(jié)論: ①已知函數(shù)f(x)是定義在R上的奇函數(shù),若f(﹣1)=2,f(﹣3)=﹣1,則f(3)<f(﹣1);
②函數(shù)y=log (x2﹣2x)的單調(diào)遞增減區(qū)間是(﹣∞,0);
③已知函數(shù)f(x)是奇函數(shù),當(dāng)x≥0時,f(x)=x2 , 則當(dāng)x<0時,f(x)=﹣x2;
④若函數(shù)y=f(x)的圖象與函數(shù)y=ex的圖象關(guān)于直線y=x對稱,則對任意實數(shù)x,y都有f(xy)=f(x)+f(y).
則正確結(jié)論的序號是(請將所有正確結(jié)論的序號填在橫線上).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】求函數(shù)f(x)=﹣x2+4x﹣6,x∈[0,5]的值域( )
A.[﹣6,﹣2]
B.[﹣11,﹣2]
C.[﹣11,﹣6]
D.[﹣11,﹣1]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)和(為常數(shù))的圖象在處有公切線.
(Ⅰ)求實數(shù)的值;
(Ⅱ)求函數(shù)的極大值和極小值;
(Ⅲ)關(guān)于x的方程由幾個不同的實數(shù)解?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知y=f(x)是二次函數(shù),方程f(x)=0有兩相等實根,且f′(x)=2x+2
(1)求f(x)的解析式.
(2)求函數(shù)y=f(x)與y=﹣x2﹣4x+1所圍成的圖形的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com