【題目】設(shè)偶函數(shù)f(x)的定義域?yàn)閇﹣4,0)∪(0,4],若當(dāng)x∈(0,4]時(shí),f(x)=log2x,
(1)求出函數(shù)在定義域[﹣4,0)∪(0,4]的解析式;
(2)求不等式xf(x)<0得解集.

【答案】
(1)解:由題意知:f(x)是偶函數(shù),即f(﹣x)=f(x),

當(dāng)x∈(0,4]時(shí),f(x)=log2x,

那么:當(dāng)x∈[﹣4,0)時(shí),則﹣x∈(0,4],

可得:f(﹣x)=log2﹣x,

∵f(﹣x)=f(x),

∴f(x)=log2﹣x,

故得f(x)的函數(shù)解析式為:


(2)解:當(dāng)0<x≤4時(shí),f(x)=log2x,

∵0<x<1時(shí),f(x)<0,

不等式xf(x)<0恒成立.

當(dāng)﹣4≤x<0時(shí),f(x)=log2﹣x,

∵﹣4≤x<﹣1時(shí),f(x)>0,

不等式xf(x)<0恒成立.

綜上所述:不等式的解集為(﹣4,﹣1)∪(0,1)


【解析】(1)根據(jù)f(x)是偶函數(shù),f(﹣x)=f(x),當(dāng)x∈(0,4]時(shí),f(x)=log2x,可求x∈[﹣4,0)的解析式.(2)根據(jù)定義域的不同,解析式不同,分類解不等式即可.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知向量 =(cosx,sinx), =( sinx,sinx),x∈R設(shè)函數(shù)f(x)=
(1)求函數(shù)f(x)的最小正周期;
(2)求函數(shù)f(x)在[0, ]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司欲制作容積為16米3 , 高為1米的無蓋長方體容器,已知該容器的底面造價(jià)是每平方米1000元,側(cè)面造價(jià)是每平方米500元,記該容器底面一邊的長為x米,容器的總造價(jià)為y元.
(1)試用x表示y;
(2)求y的最小值及此時(shí)該容器的底面邊長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,A,B的坐標(biāo)分別是 ,點(diǎn)G是△ABC的重心,y軸上一點(diǎn)M滿足GM∥AB,且|MC|=|MB|. (Ⅰ)求△ABC的頂點(diǎn)C的軌跡E的方程;
(Ⅱ)直線l:y=kx+m與軌跡E相交于P,Q兩點(diǎn),若在軌跡E上存在點(diǎn)R,使四邊形OPRQ為平行四邊形(其中O為坐標(biāo)原點(diǎn)),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從裝有個(gè)紅球和個(gè)黒球的口袋內(nèi)任取個(gè)球,那么互斥而不對立的兩個(gè)事件是( )
A.至少有一個(gè)黒球與都是黒球
B.至少有一個(gè)黑球與都是紅球
C.至少有一個(gè)黒球與至少有個(gè)紅球
D.恰有個(gè)黒球與恰有個(gè)黒球

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)=x2+(2+lga)x+lgb,f(﹣1)=﹣2且f(x)≥2x恒成立,求a、b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)總體中含有4個(gè)個(gè)體,從中抽取一個(gè)容量為2的樣本,說明為什么在抽取過程中每個(gè)個(gè)體被抽取的概率都相等

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=2ax﹣2,g(x)=a(x﹣2a)(x+2﹣a),a∈R且a≠0.
(1)若{x|f(x)g(x)=0}={1,2},求實(shí)數(shù)a的值;
(2)若{x|f(x)<0或g(x)<0}=R,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖是甲、乙兩名籃球運(yùn)動(dòng)員2012年賽季每場比賽得分的莖葉圖,則甲、乙兩人比賽得分的中位數(shù)之和是

查看答案和解析>>

同步練習(xí)冊答案