【題目】下列函數(shù)f(x)中,滿足“x1x2∈(0,+∞)且x1≠x2有(x1﹣x2)[f(x1)﹣f(x2)]<0”的是(
A.f(x)= ﹣x
B.f(x)=x3
C.f(x)=lnx+ex
D.f(x)=﹣x2+2x

【答案】A
【解析】解:若“x1,x2∈(0,+∞)且x1≠x2,(x1﹣x2)[f(x1)﹣f(x2)]<0”,

則函數(shù)f(x)在(0,+∞)上為減函數(shù),

A中,f(x)= ﹣x在(0,+∞)上為減函數(shù),

B中,f(x)=x3在(0,+∞)上為增函數(shù),

C中,f(x)=lnx+ex在(0,+∞)上為增函數(shù),

D是,f(x)=﹣x2+2x在(0,1)上為增函數(shù),在(1,+∞)上為減函數(shù),

故選:A.

【考點(diǎn)精析】本題主要考查了函數(shù)單調(diào)性的性質(zhì)的相關(guān)知識(shí)點(diǎn),需要掌握函數(shù)的單調(diào)區(qū)間只能是其定義域的子區(qū)間 ,不能把單調(diào)性相同的區(qū)間和在一起寫成其并集才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某服裝廠生產(chǎn)一種服裝,每件服裝的成本為40元,出廠單價(jià)定為60元.該廠為鼓勵(lì)銷售商定購,決定當(dāng)一次定購量超過100件時(shí),每多定購一件,訂購的全部零件的出廠單價(jià)就降低0.02元.根據(jù)市場調(diào)查,銷售商一次定購量不會(huì)超過500件.

(1)設(shè)一次定購量為x件,服裝的實(shí)際出廠總價(jià)為P元,寫出函數(shù)P=f(x)的表達(dá)式;

(2)當(dāng)銷售商一次定購了450件服裝時(shí),該服裝廠獲得的利潤是多少元?

(服裝廠售出一件服裝的利潤=實(shí)際出廠價(jià)格-成本)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司為了了解一年內(nèi)的用水情況,抽取了10天的用水量如下表所示:

天數(shù)

1

1

1

2

2

1

2

用水量/噸

22

38

40

41

44

50

95

(Ⅰ)在這10天中,該公司用水量的平均數(shù)是多少?每天用水量的中位數(shù)是多少?

(Ⅱ)你認(rèn)為應(yīng)該用平均數(shù)和中位數(shù)中的哪一個(gè)數(shù)來描述該公司每天的用水量?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】以下命題正確的個(gè)數(shù)為( ) ①存在無數(shù)個(gè)α,β∈R,使得等式sin(α﹣β)=sinαcosβ+cosαsinβ成立;
②在△ABC中,“A> ”是“sinA> ”的充要條件;
③命題“在△ABC中,若sinA=sinB,則A=B”的逆否命題是真命題;
④命題“若α= ,則sinα= ”的否命題是“若α≠ ,則sinα≠ ”.
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ax+ (a,b∈R)的圖象過點(diǎn)P(1,f(1)),且在點(diǎn)P處的切線方程為y=3x﹣8.
(Ⅰ)求a,b的值;
(Ⅱ)求函數(shù)f(x)的極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓Cx2y22x4y40,

1)求圓C關(guān)于直線對稱的圓的方程;

2)問是否存在斜率為1的直線l,使l被圓C截得弦AB,且以AB為直徑的圓經(jīng)過點(diǎn)?若存在,求出直線l的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)不等式組 ,表示的平面區(qū)域?yàn)镈,在區(qū)域D內(nèi)隨機(jī)取一個(gè)點(diǎn),則此點(diǎn)到坐標(biāo)原點(diǎn)的距離大于2的概率是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】寧德被譽(yù)為“中國大黃魚之鄉(xiāng)”,海域面積4.46萬平方公里,水產(chǎn)資源極為豐富.“寧德大黃魚”作為福建寧德地理標(biāo)志產(chǎn)品,同時(shí)也是寧德最具區(qū)域特色的海水養(yǎng)殖品種,全國80%以上的大黃魚產(chǎn)自寧德,年產(chǎn)值超過60億元.現(xiàn)有一養(yǎng)殖戶為了解大黃魚的生長狀況,對其漁場中100萬尾魚的凈重(單位:克)進(jìn)行抽樣檢測,將抽樣所得數(shù)據(jù)繪制成頻率分布直方圖如圖.其中產(chǎn)品凈重的范圍是,已知樣本中產(chǎn) 品凈重小于100克的有360尾.

(1)計(jì)算樣本中大黃魚的數(shù)量;

(2)假設(shè)樣本平均值不低于101.3克的漁場為級(jí)漁場,否則為級(jí)漁場.那么要使得該漁場為級(jí)漁場,則樣本中凈重在的大黃魚最多有幾尾?

(3)為提升養(yǎng)殖效果,該養(yǎng)殖戶進(jìn)行低沉性配合飼料養(yǎng)殖,凈重小于98克的每4萬尾合用一個(gè)網(wǎng)箱,大于等于98克的每3萬尾合用一個(gè)網(wǎng)箱.根據(jù)(2)中所求的最大值,估計(jì)該養(yǎng)殖戶需要準(zhǔn)備多少個(gè)網(wǎng)箱?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列 的前 項(xiàng)和為 ,
(Ⅰ)求 ,猜想 的通項(xiàng)公式,并用數(shù)學(xué)歸納法證明;
(Ⅱ)設(shè) ,求證:數(shù)列 中任意三項(xiàng)均不成等比數(shù)列.

查看答案和解析>>

同步練習(xí)冊答案