【題目】【南京市、鹽城市2017屆高三年級(jí)第二次模擬】(本小題滿分16分)
如圖,在平面直角坐標(biāo)系xOy中,焦點(diǎn)在x軸上的橢圓C:+=1經(jīng)過(guò)點(diǎn)(b,2e),其中e為橢圓C的離心率.過(guò)點(diǎn)T(1,0)作斜率為k(k>0)的直線l交橢圓C于A,B兩點(diǎn)(A在x軸下方).
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)過(guò)點(diǎn)O且平行于l的直線交橢圓C于點(diǎn)M,N,求的值;
(3)記直線l與y軸的交點(diǎn)為P.若=,求直線l的斜率k.
【答案】見(jiàn)解析
【解析】(1)因?yàn)闄E圓 +=1經(jīng)過(guò)點(diǎn)(b,2e),所以+=1.
因?yàn)?/span>e2==,所以+=1.
因?yàn)?/span>a2=b2+c2,所以 +=1. …………………… 2分
整理得 b4-12b2+32=0,解得b2=4或b2=8(舍) .
所以橢圓C的方程為+=1. …………………… 4分
(2)設(shè)A(x1,y1),B(x2,y2).因?yàn)?/span>T(1,0),則直線l的方程為y=k(x-1).
聯(lián)立直線l與橢圓方程
消去y,得 (2k2+1)x2-4k2x+2k2-8=0,
所以 x1+x2=4k2 / (2k2+1), x1x2= (2k2-8) / (2k2+1) ……………… 6分
因?yàn)?/span>MN∥l,所以直線MN方程為y=kx,
聯(lián)立直線MN與橢圓方程
消去y得 (2k2+1)x2=8,解得x2=.
因?yàn)?/span>MN∥l,所以 =. …………………… 8分
因?yàn)?(1-x1)·(x2-1)=-[x1x2-(x1+x2)+1]= ,
(xM-xN)2=4x2=,
所以 ==·=. ………………… 10分
(3)在y=k(x-1)中,令x=0,則y=-k,所以P(0,-k),
從而 =(-x1,-k-y1), =(x2-1,y2).
因?yàn)?=,所以-x1=(x2-1),即x1+x2=.…………………… 12分
由(2)知, x1+x2=4k2 / (2k2+1),
因?yàn)?/span>x1x2=, 所以 ×=,
整理得 50k4-83k2-34=0,解得k2=2或k2=- (舍) .
又因?yàn)?/span>k>0,所以k=. …………………… 16分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】【2017福建三明5月質(zhì)檢】某市政府為了引導(dǎo)居民合理用水,決定全面實(shí)施階梯水價(jià),階梯水價(jià)原則上以住宅(一套住宅為一戶)的月用水量為基準(zhǔn)定價(jià):若用水量不超過(guò)12噸時(shí),按4元/噸計(jì)算水費(fèi);若用水量超過(guò)12噸且不超過(guò)14噸時(shí),超過(guò)12噸部分按6.60元/噸計(jì)算水費(fèi);若用水量超過(guò)14噸時(shí),超過(guò)14噸部分按7.80元/噸計(jì)算水費(fèi).為了了解全市居民月用水量的分布情況,通過(guò)抽樣,獲得了100戶居民的月用水量(單位:噸),將數(shù)據(jù)按照分成8組,制成了如圖1所示的頻率分布直方圖.
(Ⅰ)假設(shè)用抽到的100戶居民月用水量作為樣本估計(jì)全市的居民用水情況.
(ⅰ)現(xiàn)從全市居民中依次隨機(jī)抽取5戶,求這5戶居民恰好3戶居民的月用水用量都超過(guò)12噸的概率;
(ⅱ)試估計(jì)全市居民用水價(jià)格的期望(精確到0.01);
(Ⅱ)如圖2是該市居民李某2016年1~6月份的月用水費(fèi)(元)與月份的散點(diǎn)圖,其擬合的線性回歸方程是.若李某2016年1~7月份水費(fèi)總支出為294.6元,試估計(jì)李某7月份的用水噸數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直三棱柱ABC﹣A1B1C1中,AB=1,AC=AA1= , ∠ABC=60°.
(1)證明:AB⊥A1C;
(2)求二面角A﹣A1C﹣B的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若某校高一年級(jí)8個(gè)班參加合唱比賽的得分如莖葉圖所示,則這組數(shù)據(jù)的中位數(shù)和平均數(shù)分別是( )
A.91.5和91.5
B.91.5和92
C.91和91.5
D.92和92
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】【2017南通一模19】已知函數(shù)。
(1)當(dāng)時(shí),求函數(shù)的最小值;
(2)若,證明:函數(shù)有且只有一個(gè)零點(diǎn);
(3)若函數(shù)又兩個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】【2017南通揚(yáng)州泰州蘇北四市高三二!浚ū拘☆}滿分14分)
如圖,在平面直角坐標(biāo)系中,已知橢圓的離心率為,C為橢
圓上位于第一象限內(nèi)的一點(diǎn).
(1)若點(diǎn)的坐標(biāo)為,求a,b的值;
(2)設(shè)A為橢圓的左頂點(diǎn),B為橢圓上一點(diǎn),且,求直線AB的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列四個(gè)命題:
①樣本方差反映的是所有樣本數(shù)據(jù)與樣本平均值的偏離程度;
②某校高三一級(jí)部和二級(jí)部的人數(shù)分別是m、n,本次期末考試兩級(jí)部數(shù)學(xué)平均分分別是a、b,則這兩個(gè)級(jí)部的數(shù)學(xué)平均分為 + ;
③某中學(xué)采用系統(tǒng)抽樣方法,從該校高一年級(jí)全體800名學(xué)生中抽50名學(xué)生做牙齒健康檢查,現(xiàn)將800名學(xué)生從001到800進(jìn)行編號(hào),已知從497﹣﹣512這16個(gè)數(shù)中取得的學(xué)生編號(hào)是503,則初始在第1小組00l~016中隨機(jī)抽到的學(xué)生編號(hào)是007.
其中命題正確的個(gè)數(shù)是( )
A.0個(gè)
B.1個(gè)
C.2個(gè)
D.3個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】福州市某大型家電商場(chǎng)為了使每月銷售空調(diào)和冰箱獲得的總利潤(rùn)達(dá)到最大,對(duì)某月即將出售的空調(diào)和冰箱進(jìn)行了相關(guān)調(diào)查,得出下表:
資金 | 每臺(tái)空調(diào)或冰箱所需資金(百元) | 月資金最多供應(yīng)量(百元) | |
空調(diào) | 冰箱 | ||
進(jìn)貨成本 | 30 | 20 | 300 |
工人工資 | 5 | 10 | 110 |
每臺(tái)利潤(rùn) | 6 | 8 |
問(wèn):該商場(chǎng)如果根據(jù)調(diào)查得來(lái)的數(shù)據(jù),應(yīng)該怎樣確定空調(diào)和冰箱的月供應(yīng)量,才能使商場(chǎng)獲得的總利潤(rùn)最大?總利潤(rùn)的最大值為多少元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某單位有工程師6人,技術(shù)員12人,技工18人,要從這些人中抽取一個(gè)容量為n的樣本.如果采用系統(tǒng)抽樣和分層抽樣方法抽取,不用剔除個(gè)體;如果樣本容量增加一個(gè),則在采用系統(tǒng)抽樣時(shí),需要在總體中先剔除1個(gè)個(gè)體,求樣本容量n.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com