【題目】古希臘雅典學(xué)派算學(xué)家歐道克薩斯提出了“黃金分割”的理論,利用尺規(guī)作圖可畫出己知線段的黃金分割點(diǎn),具體方法如下:(l)取線段AB=2,過點(diǎn)B作AB的垂線,并用圓規(guī)在垂線上截取BC=AB,連接AC;(2)以C為圓心,BC為半徑畫弧,交AC于點(diǎn)D;(3)以A為圓心,以AD為半徑畫弧,交AB于點(diǎn)E.則點(diǎn)E即為線段AB的黃金分割點(diǎn).若在線段AB上隨機(jī)取一點(diǎn)F,則使得BE≤AF≤AE的概率約為( 。▍⒖紨(shù)據(jù):2.236)
A. 0.236B. 0.382C. 0.472D. 0.618
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,底面為矩形的四棱錐,底面,,,是的中點(diǎn).
(1)求四棱錐的體積;
(2)求與面所成角;
(3)在邊上是否存在一點(diǎn),使得到平面的距離為?若存在,求出;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一般來說,一個(gè)人腳掌越長,他的身高就越高,現(xiàn)對(duì)10名成年人的腳掌與身高進(jìn)行測(cè)量,得到數(shù)據(jù)(單位:cm)作為樣本如表所示:
腳掌長() | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 |
身高() | 141 | 146 | 154 | 160 | 169 | 176 | 181 | 188 | 197 | 203 |
(1)在上表數(shù)據(jù)中,以“腳掌長”為橫坐標(biāo),“身高”為縱坐標(biāo),作出散點(diǎn)圖后,發(fā)現(xiàn)散點(diǎn)在一條直線附近,試求“身高”與“腳掌長”之間的線性回歸方程;
(2)若某人的腳掌長為26.5cm,試估計(jì)此人的身高;
(3)在樣本中,從身高180cm以上的4人中隨機(jī)抽取2人進(jìn)行進(jìn)一步的分析,求所抽取的2人中至少有1人身高在190cm以上的概率.
(參考數(shù)據(jù):,,,,)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等軸雙曲線的兩個(gè)焦點(diǎn)、在直線上,線段的中點(diǎn)是坐標(biāo)原點(diǎn),且雙曲線經(jīng)過點(diǎn).
(1)若已知下列所給的三個(gè)方程中有一個(gè)是等軸雙曲線的方程:①;②;③.請(qǐng)推理判斷哪個(gè)是等軸雙曲線的方程,并求出此雙曲線的實(shí)軸長;
(2)現(xiàn)要在等軸雙曲線上選一處建一座碼頭,向、兩地轉(zhuǎn)運(yùn)貨物.經(jīng)測(cè)算,從到、從到修建公路的費(fèi)用都是每單位長度萬元,則碼頭應(yīng)建在何處,才能使修建兩條公路的總費(fèi)用最低?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,,, O為DE的中點(diǎn),.F為的中點(diǎn),平面平面BCED.
(1)求證:平面 平面.
(2)線段OC上是否存在點(diǎn)G,使得平面EFG?說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在多面體中,四邊形為正方形,,,.
(1)證明:平面平面.
(2)若平面,二面角為,三棱錐的外接球的球心為,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,拋物線的準(zhǔn)線被橢圓截得的線段長為.
(1)求橢圓的方程;
(2)如圖,點(diǎn)分別是橢圓的左頂點(diǎn)、左焦點(diǎn)直線與橢圓交于不同的兩點(diǎn)(都在軸上方).且.證明:直線過定點(diǎn),并求出該定點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的右焦點(diǎn),,,是橢圓上任意三點(diǎn),,關(guān)于原點(diǎn)對(duì)稱且滿足.
(1)求橢圓的方程.
(2)若斜率為的直線與圓:相切,與橢圓相交于不同的兩點(diǎn)、,求時(shí),求的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com