【題目】已知函數(shù),.

1)證明:不等式恒成立;

2)證明:存在兩個(gè)極值點(diǎn),

附:,.

【答案】1)證明見(jiàn)解析;(2)證明見(jiàn)解析;

【解析】

1,首先利用導(dǎo)數(shù)證明當(dāng)時(shí),總有,然后可得

2)分兩種情況討論,每種情況都要用導(dǎo)數(shù)求出的單調(diào)性.

1,

設(shè),易得上為增函數(shù),

,

∴存在唯一,使得,

∴在時(shí),為減函數(shù),

時(shí),為增函數(shù),,

因此時(shí),總有,為減函數(shù).

,從而原不等式得證.

2,則,

時(shí),令

上遞增.

.

∴存在唯一,使.

時(shí),為減函數(shù),即為減函數(shù),

時(shí),,為增函數(shù),即為增函數(shù),

,.

,存在唯一的使得

∴在時(shí),,為減函數(shù),

時(shí),,為增函數(shù),故一個(gè)極小值點(diǎn).

另一方面,在時(shí),由

,∴

由(1)可知,∴上恒成立,

上恒成立,∴的極大值點(diǎn),從而得證.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

1)當(dāng)a=-2時(shí),求函數(shù)f(x)的極值;

2)若ln[e(x+1)]≥2- f(-x)對(duì)任意的x[0,+∞)成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知棱長(zhǎng)為2的正方體中,EDC中點(diǎn),F在線段上運(yùn)動(dòng),則三棱錐的外接球的表面積最小值為( )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】農(nóng)歷五月初五是端午節(jié),民間有吃粽子的習(xí)慣,粽子又稱粽粒,俗稱粽子,古稱角黍,是端午節(jié)大家都會(huì)品嘗的食品,傳說(shuō)這是為了紀(jì)念戰(zhàn)國(guó)時(shí)期楚國(guó)大臣、愛(ài)國(guó)主義詩(shī)人屈原.如圖,平行四邊形形狀的紙片是由六個(gè)邊長(zhǎng)為2的正三角形構(gòu)成的,將它沿虛線折起來(lái),可以得到如圖所示粽子形狀的六面體,則該六面體的表面積為________;該六面體內(nèi)有一球,則該球體積的最大值為________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為,為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

1)若,求的極坐標(biāo)方程;

2)若恰有4個(gè)公共點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),其中e是自然對(duì)數(shù)的底數(shù).

1)若函數(shù)的極大值為,求實(shí)數(shù)a的值;

2)當(dāng)ae時(shí),若曲線處的切線互相垂直,求的值;

3)設(shè)函數(shù),若0對(duì)任意的x(0,1)恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知正項(xiàng)數(shù)列的首項(xiàng),其前項(xiàng)和為,且的等比中項(xiàng)是,數(shù)列滿足:.

(1),并求數(shù)列的通項(xiàng)公式;

(2),,證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2020年春節(jié)突如其來(lái)的新型冠狀病毒肺炎在湖北爆發(fā),一方有難八方支援,全國(guó)各地的白衣天使走上戰(zhàn)場(chǎng)的第一線,某醫(yī)院抽調(diào)甲、乙兩名醫(yī)生,抽調(diào)三名護(hù)士支援武漢第一醫(yī)院與第二醫(yī)院,參加武漢疫情狙擊戰(zhàn)其中選一名護(hù)士與一名醫(yī)生去第一醫(yī)院,其它都在第二醫(yī)院工作,則醫(yī)生甲和護(hù)士被選在第一醫(yī)院工作的概率為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線,過(guò)點(diǎn)的直線交于不同的兩點(diǎn),且滿足,以為中點(diǎn)的線段的兩端點(diǎn)分別為,其中軸上,上,則_______的最小值為____________

查看答案和解析>>

同步練習(xí)冊(cè)答案