【題目】已知函數(shù)

1)若曲線在點處的切線為, 軸的交點坐標為,求的值;

2)討論的單調性.

【答案】(1);(2)見解析

【解析】分析:(1)對函數(shù)求導,再分別求出, ,根據(jù)點斜式寫出切線方程,然后根據(jù)軸的交點坐標為,即可求得的值;(2)先對函數(shù)求導得,再對進行分類討論,從而對的符號進行判斷,進而可得函數(shù)的單調性.

詳解:1.

∴切線方程為:

.

.

2=.

時, , 為減函數(shù), , , 為增函數(shù);

時,令,得, ,

,則,

時, , 為減函數(shù),當時, , 為增函數(shù).

(當且僅當時取“=”

∴當時, 為增函數(shù), 為減函數(shù), 為減函數(shù).

時, 上為增函數(shù).

綜上所述: 時, 上為減函數(shù),在上為增函數(shù), 時, 上為減函數(shù),在上為增函數(shù); 時, 上為增函數(shù).

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù).

1的極值;

2,證明 .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】學校為了對教師教學水平和教師管理水平進行評價,從該校學生中選出300人進行統(tǒng)計.其中對教師教學水平給出好評的學生人數(shù)為總數(shù)的,對教師管理水平給出好評的學生人數(shù)為總數(shù)的,其中對教師教學水平和教師管理水平都給出好評的有120人.

(1)填寫教師教學水平和教師管理水平評價的列聯(lián)表:

對教師管理水平好評

對教師管理水平不滿意

合計

對教師教學水平好評

對教師教學水平不滿意

合計

請問是否可以在犯錯誤概率不超過0.001的前提下,認為教師教學水平好評與教師管理水平好評有關?

(2)若將頻率視為概率,有4人參與了此次評價,設對教師教學水平和教師管理水平全好評的人數(shù)為隨機變量.

①求對教師教學水平和教師管理水平全好評的人數(shù)的分布列(概率用組合數(shù)算式表示);

②求的數(shù)學期望和方差.

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

,其中

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,底面為菱形,平面底面,且,,,的中點.

1)證明:.

2)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,四邊形ABCD為平行四邊形,AC,BD相交于點O,點E為PC的中點,OP=OC,PA⊥PD.求證:
(1)直線PA∥平面BDE;
(2)平面BDE⊥平面PCD.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列命題中正確的是( )

A. 有兩個面平行,其余各面都是四邊形的幾何體叫棱柱

B. 有兩個面平行,其余各面都是四邊形,并且每相鄰兩個四邊形的公共邊都互相平行的幾何體叫棱柱

C. 用一個平面去截棱錐,底面與截面之間的部分組成的幾何體叫棱臺

D. 有兩個面平行,其余各面都是平行四邊形的幾何體叫棱柱

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校在本校任選了一個班級,對全班50名學生進行了作業(yè)量的調查,根據(jù)調查結果統(tǒng)計后,得到如下的列聯(lián)表,已知在這50人中隨機抽取2人,這2人都“認為作業(yè)量大”的概率為.

認為作業(yè)量大

認為作業(yè)量不大

合計

男生

18

女生

17

合計

50

(Ⅰ)請完成上面的列聯(lián)表;

(Ⅱ)根據(jù)列聯(lián)表的數(shù)據(jù),能否有的把握認為“認為作業(yè)量大”與“性別”有關?

(Ⅲ)若視頻率為概率,在全校隨機抽取4人,其中“認為作業(yè)量大”的人數(shù)記為,求的分布列及數(shù)學期望.

附表:

0.100

0.050

0.025

0.010

0.001

2.706

3.841

5.024

6.635

10.828

附:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)若函數(shù)的圖象在處的切線過點,求的值;

(2)當時,函數(shù)上沒有零點,求實數(shù)的取值范圍;

(3)當時,存在實數(shù)使得,求證:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知F1 , F2分別為橢圓C1 (a>b>0)的上下焦點,其F1是拋物線C2:x2=4y的焦點,點M是C1與C2在第二象限的交點,且|MF1|=
(1)試求橢圓C1的方程;
(2)與圓x2+(y+1)2=1相切的直線l:y=k(x+t)(t≠0)交橢圓于A,B兩點,若橢圓上一點P滿足 ,求實數(shù)λ的取值范圍.

查看答案和解析>>

同步練習冊答案