【題目】現(xiàn)有長分別為、的鋼管各3根(每根鋼管的質(zhì)地均勻、粗細相同且富有不同的編號),從中隨機抽取根(假設(shè)各鋼管被抽取的可能性是均等的,),再將抽取的鋼管相接焊成筆直的一根.

(I)當時,記事件,求;

(II)當時,若用表示新焊成的鋼管的長度(焊接誤差不計),求的分布列和數(shù)學期望

【答案】I:;Ⅱ.見解析.

【解析】

I:總的基本事件數(shù)為,事件A,可從三類中任取一類,再從該類的3個中任取2個,然后再從其余兩類的6個中任取1個,由分步計數(shù)原理可得種數(shù),進而可得概率;Ⅱ:可能的取值為2,3,4,5,6,求出相應(yīng)的概率值即可得到分布列.

I. 總的基本事件數(shù)為,事件A,可從三類中任取一類,再從該類的3個中任取2個,然后再從其余兩類的6個中任取1個,由分步計數(shù)原理可得種數(shù),進而可得概率;

事件A為隨機事件,

Ⅱ.可能的取值為2,3,4,5,6

的分布列為:

2

3

4

5

6

P

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】為增強市民的環(huán)境保護意識,某市面向全市學校征召100名教師做義務(wù)宣傳志愿者,成立環(huán)境保護宣傳組,現(xiàn)把該組的成員按年齡分成5組,如下表所示:

組別

年齡

人數(shù)

1

5

2

35

3

20

4

30

5

10

(Ⅰ)若從第3,4,5組中用分層抽樣的方法選出6名志愿者參加某社區(qū)宣傳活動,應(yīng)從第3,4,5組各選出多少名志愿者?

(Ⅱ)在Ⅰ的條件下,宣傳組決定在這6名志愿者中隨機選2名志愿者介紹宣傳經(jīng)驗.

(ⅰ)列出所有可能結(jié)果;

(ⅱ)求第4組至少有1名志愿者被選中的概率。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某人設(shè)計一項單人游戲,規(guī)則如下:先將一棋子放在如圖所示正方形(邊長為3個單位)的頂點處,然后通過擲骰子來確定棋子沿正方形的邊按逆時針方向行走的單位,如果擲出的點數(shù)為,則棋子就按逆時針方向行走個單位,一直循環(huán)下去.則某人拋擲三次次骰子后棋子恰好又回到點處的所有不同走法共有(

A.21B.24C.25D.27

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】從某地區(qū)隨機抽測120名成年女子的血清總蛋白含量(單位:),由測量結(jié)果得如圖頻數(shù)分布表:

1)①仔細觀察表中數(shù)據(jù),算出該樣本平均數(shù)______;

②由表格可以認為,該地區(qū)成年女子的血清總蛋白含量Z服從正態(tài)分布.其中近似為樣本平均數(shù),近似為樣本標準差s.經(jīng)計算,該樣本標準差.

醫(yī)學上,Z過高或過低都為異常,Z的正常值范圍通常取關(guān)于對稱的區(qū)間,且Z位于該區(qū)間的概率為,試用該樣本估計該地區(qū)血清總蛋白正常值范圍.

120名成年女人的血清總蛋白含量的頻數(shù)分布表

分組

頻數(shù)f

區(qū)間中點值x

2

65

130

8

67

536

12

69

828

15

71

1065

25

73

1825

24

75

1800

16

77

1232

10

79

790

7

81

567

1

83

83

合計

120

8856

2)結(jié)合(1)中的正常值范圍,若該地區(qū)有5名成年女子檢測血清總蛋白含量,測得數(shù)據(jù)分別為83.2,80,73,59.5,77,從中隨機抽取2名女子,設(shè)血清總蛋白含量不在正常值范圍的人數(shù)為X,求X的分布列和數(shù)學期望.

附:若,則.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列的前n項和是等差數(shù)列,且.

)求數(shù)列的通項公式;

)令.求數(shù)列的前n項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】執(zhí)行下面的程序框圖,如果輸入的,則輸出的( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知動圓與圓 相切,且與圓 相內(nèi)切,記圓心的軌跡為曲線.設(shè)為曲線上的一個不在軸上的動點, 為坐標原點,過點的平行線交曲線, 兩個不同的點.

(Ⅰ)求曲線的方程;

(Ⅱ)試探究的比值能否為一個常數(shù)?若能,求出這個常數(shù),若不能,請說明理由;

(Ⅲ)記的面積為, 的面積為,令,求的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率為,點在橢圓上.直線過點,且與橢圓 交于,兩點,線段的中點為

(I)求橢圓的方程;

(Ⅱ)點為坐標原點,延長線段與橢圓交于點,四邊形能否為平行四邊形?若能,求出此時直線的方程,若不能,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知正方形和矩形所在的平面互相垂直,點,中點,,.

1)求證:;

2)求證:平面;

3)求二面角的大小.

查看答案和解析>>

同步練習冊答案