【題目】已知二次函數(shù)的圖象過點(diǎn),對任意滿足,且有最小值為
(1)求的解析式;
(2)求函數(shù)在區(qū)間[0,1]上的最小值,其中;
(3)在區(qū)間[-1,3]上,的圖象恒在函數(shù)的圖象上方,試確定實(shí)數(shù)的范圍.
【答案】(1);(2);(3).
【解析】
(1)由題中條件可得函數(shù)的對稱軸是,再根據(jù)函數(shù)最小值為可設(shè)出函數(shù)方程,再將代入可得解析式;
(2)先得出函數(shù)含未知數(shù)的解析式,討論的取值范圍,在對應(yīng)范圍內(nèi)分析單調(diào)性,得出最小值;
(3)函數(shù)的圖象在的上方,則在上恒成立,即,即求函數(shù)的最小值,從而求得結(jié)果.
(1)由題知二次函數(shù)圖象的對稱軸為x=,又最小值是,
則可設(shè),又圖象過點(diǎn)(0,4),解得a=1.
所以;
(2)h(x)=f(x)-(2t-3)x=x2-2tx+4=(x-t)2+4-t2,其對稱軸x=t.
①t≤0時,函數(shù)h(x)在[0,1]上單調(diào)遞增,最小值為h(0)=4;
②當(dāng)0<t<1時,函數(shù)h(x)的最小值為h(t)=4-t2;
③當(dāng)t≥1時,函數(shù)h(x)在0,1]上單調(diào)遞減,最小值為h(1)=5-2t,
所以;
(3)由已知:f(x)>2x+m對x∈恒成立,
∴m<x2-5x+4對x∈恒成立.
∴m<(x2-5x+4)min (x∈).
∵g(x)=x2-5x+4在x∈上的最小值為,
∴m<.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,將一矩形花壇ABCD擴(kuò)建成一個更大的矩形花壇AMPN,要求B點(diǎn)在AM上,D點(diǎn)在AN上,且對角線MN過點(diǎn)C,已知AB=2米,AD=1米.
(1)要使矩形AMPN的面積大于9平方米,則DN的長應(yīng)在什么范圍內(nèi)?
(2)當(dāng)DN的長度為多少時,矩形花壇AMPN的面積最?并求出最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了了解某省各景區(qū)在大眾中的熟知度,隨機(jī)從本省歲的人群中抽取了人,得到各年齡段人數(shù)的頻率分布直方圖如圖所示,現(xiàn)讓他們回答問題“該省有哪幾個國家級旅游景區(qū)?”,統(tǒng)計(jì)結(jié)果如下表所示:
組號 | 分組 | 回答正確的人數(shù) | 回答正確的人數(shù)占本組的頻率 |
第組 | |||
第組 | |||
第組 | |||
第組 | |||
第組 |
(1)分別求出的值;
(2)從第組回答正確的人中用分層抽樣的方法抽取人,求第組每組抽取的人數(shù);
(3)在(2)中抽取的人中隨機(jī)抽取人,求所抽取的人中恰好沒有年齡段在的概率
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,已知曲線:,已知過點(diǎn)的直線的參數(shù)方程為: (為參數(shù)),直線與曲線分別交于兩點(diǎn).
(1)寫出曲線和直線的普通方程;
(2)若,,成等比數(shù)列,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分12分)假設(shè)關(guān)于某設(shè)備使用年限x(年)和所支出的維修費(fèi)用y(萬元)有如下統(tǒng)計(jì)資料:
2 | 3 | 4 | 5 | 6 | |
2.2 | 3.8 | 5.5 | 6.5 | 7.0 |
若由資料知,y對x呈線性相關(guān)關(guān)系,試求:
(1)回歸直線方程;
(2)估計(jì)使用年限為10年時,維修費(fèi)用約是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè),為兩條不同的直線,,為兩個不同的平面,給出下列命題:
①若,,則;
②若,,則;
③若,,,則;
④若,,則與所成的角和與所成的角相等.
其中正確命題的序號是( )
A.①②B.①④C.②③D.②④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知單位圓O上的兩點(diǎn)A,B及單位圓所在平面上的一點(diǎn)P,滿足 =m + (m為常數(shù)).
(1)如圖,若四邊形OABP為平行四邊形,求m的值;
(2)若m=2,求| |的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲乙兩人進(jìn)行圍棋比賽,約定先連勝兩局者直接贏得比賽,若賽完5局仍未出現(xiàn)連勝,則判定獲勝局?jǐn)?shù)多者贏得比賽,假設(shè)每局甲獲勝的概率為,乙獲勝的概率為,各局比賽結(jié)果相互獨(dú)立.
求甲在4局以內(nèi)(含4局)贏得比賽的概率;
記為比賽決出勝負(fù)時的總局?jǐn)?shù),求的分布列和均值(數(shù)學(xué)期望).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com