【題目】某學(xué)校高三年級(jí)有學(xué)生1 000名,經(jīng)調(diào)查,其中750名同學(xué)經(jīng)常參加體育鍛煉(稱(chēng)為A類(lèi)同學(xué)),另外250名同學(xué)不經(jīng)常參加體育鍛煉(稱(chēng)為B類(lèi)同學(xué)),現(xiàn)用分層抽樣方法(按A類(lèi)、B類(lèi)分兩層)從該年級(jí)的學(xué)生中共抽查100名同學(xué),如果以身高達(dá)165 cm作為達(dá)標(biāo)的標(biāo)準(zhǔn),對(duì)抽取的100名學(xué)生,得到以下列聯(lián)表:

身高達(dá)標(biāo)

身高不達(dá)標(biāo)

總計(jì)

經(jīng)常參加體育鍛煉

40

不經(jīng)常參加體育鍛煉

15

總計(jì)

100


(1)完成上表;
(2)能否在犯錯(cuò)誤的概率不超過(guò)0.05的前提下認(rèn)為經(jīng)常參加體育鍛煉與身高達(dá)標(biāo)有關(guān)系(K2的觀測(cè)值精確到0.001)?

【答案】
(1)解:填寫(xiě)列聯(lián)表如下:

身高達(dá)標(biāo)

身高不達(dá)標(biāo)

總計(jì)

經(jīng)常參加體育鍛煉

40

35

75

不經(jīng)常參加體育鍛煉

10

15

25

總計(jì)

50

50

100


(2)解:由列聯(lián)表中的數(shù)據(jù),得K 2的觀測(cè)值為

所以不能在犯錯(cuò)誤的概率不超過(guò)0.05的前提下認(rèn)為經(jīng)常參加體育鍛煉與身高達(dá)標(biāo)有關(guān)系.


【解析】(1)根據(jù)題意可知抽取的學(xué)生中經(jīng)常參加體育鍛煉的學(xué)生為75人,不經(jīng)常參加體育鍛煉的學(xué)生為25人,從而可完成表格;(2)根據(jù)(1)中的表格及K的公式求值,并得出結(jié)論.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)P是長(zhǎng)軸長(zhǎng)為 的橢圓Q: 上異于頂點(diǎn)的一個(gè)動(dòng)點(diǎn),O為坐標(biāo)原點(diǎn),A為橢圓的右頂點(diǎn),點(diǎn)M為線段PA的中點(diǎn),且直線PA與OM的斜率之積恒為
(1)求橢圓Q的方程;
(2)設(shè)過(guò)左焦點(diǎn)F1且不與坐標(biāo)軸垂直的直線l交橢圓于C,D兩點(diǎn),線段CD的垂直平分線與x軸交于點(diǎn)G,點(diǎn)G橫坐標(biāo)的取值范圍是 ,求|CD|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系 中,直線 的參數(shù)方程為 為參數(shù)),以原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系,圓 的極坐標(biāo)方程為 .
(1)寫(xiě)出直線 的普通方程及圓 的直角坐標(biāo)方程;
(2)點(diǎn) 是直線 上的點(diǎn),求點(diǎn) 的坐標(biāo),使 到圓心 的距離最小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知單調(diào)遞增的等比數(shù)列滿足,且的等差中項(xiàng).

(Ⅰ)求數(shù)列的通項(xiàng)公式;

(Ⅱ)若,對(duì)任意正數(shù)數(shù), 恒成立,試求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某漁船在航行中不幸遇險(xiǎn),發(fā)出呼叫信號(hào),我海軍艦艇在處獲悉后,立即測(cè)出該漁船在方位角(從指北方向順時(shí)針轉(zhuǎn)到目標(biāo)方向線的水平角)為,距離為15海里的處,并測(cè)得漁船正沿方位角為的方向,以15海里/小時(shí)的速度向小島靠攏,我海軍艦艇立即以海里/小時(shí)的速度前去營(yíng)救,求艦艇靠近漁船所需的最少時(shí)間和艦艇的航向.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】學(xué)校藝術(shù)節(jié)對(duì)同一類(lèi)的 , , 四項(xiàng)參賽作品,只評(píng)一項(xiàng)一等獎(jiǎng),在評(píng)獎(jiǎng)揭曉前,甲、乙、丙、丁四位同學(xué)對(duì)這四項(xiàng)參賽作品預(yù)測(cè)如下:
甲說(shuō):“是 作品獲得一等獎(jiǎng)”;
乙說(shuō):“ 作品獲得一等獎(jiǎng)”;
丙說(shuō):“ , 兩項(xiàng)作品未獲得一等獎(jiǎng)”;
丁說(shuō):“是 作品獲得一等獎(jiǎng)”.
若這四位同學(xué)中只有兩位說(shuō)的話是對(duì)的,則獲得一等獎(jiǎng)的作品是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某機(jī)構(gòu)為了解某市民用電情況,抽查了該市100戶(hù)居民月均用電量(單位:,分組的頻率分布直方圖如圖所示.

(1)求樣本中月均用電量為的用戶(hù)數(shù)量;

(2)估計(jì)月均用電量的中位數(shù);

(3)在月均用電量為的四組用戶(hù)中,用分層抽樣的方法抽取22戶(hù)居民,則月均用電量為的用戶(hù)中應(yīng)該抽取多少戶(hù)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)雙曲線 (a>0,b>0)的左焦點(diǎn)為F1 , 左頂點(diǎn)為A,過(guò)F1作x軸的垂線交雙曲線于P、Q兩點(diǎn),過(guò)P作PM垂直QA于M,過(guò)Q作QN垂直P(pán)A于N,設(shè)PM與QN的交點(diǎn)為B,若B到直線PQ的距離大于a+ ,則該雙曲線的離心率取值范圍是(
A.(1﹣
B.( ,+∞)
C.(1,2
D.(2 ,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在正方體ABCD-A1B1C1D1,M,N分別為棱C1D1,C1C的中點(diǎn),有以下四個(gè)結(jié)論:

直線AMCC1是相交直線;直線AMBN是平行直線;

直線BNMB1是異面直線; 直線MNAC所成的角為60°.

其中正確的結(jié)論為___  (:把你認(rèn)為正確的結(jié)論序號(hào)都填上).

查看答案和解析>>

同步練習(xí)冊(cè)答案