已知如圖,直線(p>0),點(diǎn)F,P為平面上的動(dòng)點(diǎn),過(guò)P作直線l的垂線,垂足為點(diǎn)Q,且
(1)求動(dòng)點(diǎn)P的軌跡C的方程;
(2)當(dāng)p=2時(shí),曲線C上存在不同的兩點(diǎn)關(guān)于直線y=kx+3對(duì)稱(chēng),求實(shí)數(shù)k滿足的條件(寫(xiě)出關(guān)系式即可);
(3)設(shè)動(dòng)點(diǎn)M (a,0),過(guò)M且斜率為1的直線與軌跡C交于不同的兩點(diǎn)A,B,線段AB的中垂線與x軸交于點(diǎn)N,當(dāng)|AB|≤2p時(shí),求△NAB面積的最大值.
【答案】分析:(1)先設(shè)出點(diǎn)P坐標(biāo),得到點(diǎn)Q坐標(biāo),再代入整理即可得到動(dòng)點(diǎn)P的軌跡C的方程;
(2)先假設(shè)存在,設(shè)出對(duì)稱(chēng)點(diǎn)A(x1,y1),B(x2,y2)以及直線AB所在直線方程為x+ky+n=0,聯(lián)立直線方程與拋物線方程,再結(jié)合AB中點(diǎn)M在直線y=kx+3上即可得到實(shí)數(shù)k滿足的條件.
(3)先聯(lián)立直線方程與拋物線方程,得到點(diǎn)A,B的坐標(biāo)與a的關(guān)系并表示出線段AB的長(zhǎng),結(jié)合|AB|≤2p,求出a的范圍;再求出線段AB的中垂線得到點(diǎn)N的坐標(biāo),寫(xiě)出△NAB面積的表達(dá)式,結(jié)合函數(shù)的單調(diào)性即可求解.
解答:解:(1)設(shè)點(diǎn)P坐標(biāo)為P(x,y),則點(diǎn)Q坐標(biāo)為Q(
(2分)
.得:y2=2px(p>0)(4分)
(2)p=2時(shí),y2=4x.
設(shè)曲線C上關(guān)于直線y=kx+3對(duì)稱(chēng)點(diǎn)為A(x1,y1),B(x2,y2),
則直線AB所在直線方程為x+ky+n=0,(n為常數(shù)).
代入y2=4x得y2+4ky+4n=0
△=(4k)2-16n>0即k2-n>0(3分)
又∵AB中點(diǎn)M在直線y=kx+3上,
則(2k2-n,-2k)代入y=kx+3得-2k=2k3-nk+3(5分)

.                                                     (6分)
(3)聯(lián)立⇒y2-2px-2pa=0,
∵△=4p2+8pa>0⇒(1分)


.                                       (2分)
AB中垂線y-p=-(x-a-p),即y=-x+a+2p
令y=0,x=a+2p
(3分)
(4分)
單調(diào)遞增                                   (5分)
當(dāng)時(shí),.                             (6分)
點(diǎn)評(píng):本題主要考查直線與圓錐曲線的位置關(guān)系以及弦長(zhǎng)公式的應(yīng)用.解決直線與圓錐曲線的位置關(guān)系問(wèn)題時(shí),常聯(lián)立直線方程與圓錐曲線方程,再結(jié)合韋達(dá)定理,判別式等得結(jié)論.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知如圖,拋物線y=ax2+bx+2與x軸的交點(diǎn)是A(3,0)、B(6,0),與y軸的交點(diǎn)是C.
(1)求拋物線的函數(shù)表達(dá)式;
(2)設(shè)P(x,y)(0<x<6)是拋物線上的動(dòng)點(diǎn),過(guò)點(diǎn)P作PQ∥y軸交直線BC于點(diǎn)Q.
①當(dāng)x取何值時(shí),線段PQ的長(zhǎng)度取得最大值,其最大值是多少?
②是否存在這樣的點(diǎn)P,使∠OQA為直角?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2007•崇明縣一模)已知如圖,直線l:x=-
p
2
(p>0),點(diǎn)F(
p
2
,0)
,P為平面上的動(dòng)點(diǎn),過(guò)P作直線l的垂線,垂足為點(diǎn)Q,且
QP
QF
=
FP
FQ

(1)求動(dòng)點(diǎn)P的軌跡C的方程;
(2)當(dāng)p=2時(shí),曲線C上存在不同的兩點(diǎn)關(guān)于直線y=kx+3對(duì)稱(chēng),求實(shí)數(shù)k滿足的條件(寫(xiě)出關(guān)系式即可);
(3)設(shè)動(dòng)點(diǎn)M (a,0),過(guò)M且斜率為1的直線與軌跡C交于不同的兩點(diǎn)A,B,線段AB的中垂線與x軸交于點(diǎn)N,當(dāng)|AB|≤2p時(shí),求△NAB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:湖北省荊州中學(xué)2008高考復(fù)習(xí)立體幾何基礎(chǔ)題題庫(kù)一(有詳細(xì)答案)人教版 人教版 題型:044

已知(如圖):三棱錐PABC中,異面直線PABC所成的角為90°,二面角PBCA60°,△PBC和△ABC的面積分別為1610,BC4

求:(1)PA的長(zhǎng);

(2)三棱柱PABC的體積

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:崇明縣一模 題型:解答題

已知如圖,直線l:x=-
p
2
(p>0),點(diǎn)F(
p
2
,0)
,P為平面上的動(dòng)點(diǎn),過(guò)P作直線l的垂線,垂足為點(diǎn)Q,且
QP
QF
=
FP
FQ

(1)求動(dòng)點(diǎn)P的軌跡C的方程;
(2)當(dāng)p=2時(shí),曲線C上存在不同的兩點(diǎn)關(guān)于直線y=kx+3對(duì)稱(chēng),求實(shí)數(shù)k滿足的條件(寫(xiě)出關(guān)系式即可);
(3)設(shè)動(dòng)點(diǎn)M (a,0),過(guò)M且斜率為1的直線與軌跡C交于不同的兩點(diǎn)A,B,線段AB的中垂線與x軸交于點(diǎn)N,當(dāng)|AB|≤2p時(shí),求△NAB面積的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案