【題目】

如圖,曲線由曲線和曲線組成,其中點為曲線所在圓錐曲線的焦點,點為曲線所在圓錐曲線的焦點;

1)若,求曲線的方程;

2)對于(1)中的曲線,若過點作直線平行于曲線的漸近線,交曲線于點A、B,求三角形的面積;

3)如圖,若直線(不一定過)平行于曲線的漸近線,交曲線于點A、B,求證:弦AB的中點M必在曲線的另一條漸近線上.

【答案】1;(23)證明見解析;.

【解析】

1)利用待定系數(shù)法求解;(2)寫出直線方程,與曲線方程聯(lián)立,利用弦長公式和點到直線的距離公式求弦長與高,再求三角形的面積;(3)寫出漸近線的方程與直線的方程,聯(lián)立直線與橢圓的方程,利用中點坐標(biāo)公式寫出中點坐標(biāo),再驗證中點在另外一條漸近線上.

試題解析:

1

則曲線的方程為

2,曲線的漸近線

設(shè),

3)曲線的漸近線為

如圖,設(shè)直線

又由數(shù)形結(jié)合知

設(shè)點,

,

,

,即點M在直線上.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]

在極坐標(biāo)系中,O為極點,點在曲線上,直線l過點且與垂直,垂足為P.

1)當(dāng)時,求l的極坐標(biāo)方程;

2)當(dāng)MC上運動且P在線段OM上時,求P點軌跡的極坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市一中學(xué)高三年級統(tǒng)計學(xué)生的最近20次數(shù)學(xué)周測成績(滿分150分),現(xiàn)有甲乙兩位同學(xué)的20次成績?nèi)缜o葉圖所示:

1)根據(jù)莖葉圖求甲乙兩位同學(xué)成績的中位數(shù),并據(jù)此判斷甲乙兩位同學(xué)的成績誰更好?

2)將同學(xué)乙的成績的頻率分布直方圖補充完整;

3)現(xiàn)從甲乙兩位同學(xué)的不低于140分的成績中任意選出2個成績,設(shè)選出的2個成績中含甲的成績的個數(shù)為,求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(數(shù)學(xué)文卷·2017屆重慶十一中高三12月月考第16題) 現(xiàn)介紹祖暅原理求球體體積公式的做法:可構(gòu)造一個底面半徑和高都與球半徑相等的圓柱,然后在圓柱內(nèi)挖去一個以圓柱下底面圓心為頂點,圓柱上底面為底面的圓錐,用這樣一個幾何體與半球應(yīng)用祖暅原理(圖1),即可求得球的體積公式.請研究和理解球的體積公式求法的基礎(chǔ)上,解答以下問題:已知橢圓的標(biāo)準(zhǔn)方程為 ,將此橢圓繞y軸旋轉(zhuǎn)一周后,得一橄欖狀的幾何體(圖2),其體積等于______

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】五行是中國古代哲學(xué)的一種系統(tǒng)觀,廣泛用于中醫(yī)、堪輿、命理、相術(shù)和占卜等方面.古人把宇宙萬物劃分為五種性質(zhì)的事物,也即分成木、火、土、金、水五大類,并稱它們?yōu)?/span>五行”.中國古代哲學(xué)家用五行理論來說明世界萬物的形成及其相互關(guān)系,創(chuàng)造了五行相生相克理論.相生,是指兩類五行屬性不同的事物之間存在相互幫助,相互促進的關(guān)系,具體是:木生火,火生土,土生金,金生水,水生木.相克,是指兩類五行屬性不同的事物之間是相互克制的關(guān)系,具體是:木克土,土克水,水克火、火克金、金克木.現(xiàn)從分別標(biāo)有木,火,土,金,水的根竹簽中隨機抽取根,則所抽取的根竹簽上的五行屬性相克的概率為___________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于函數(shù),有下列四個命題:①的值域是;②是奇函數(shù);③上單調(diào)遞增;④方程總有四個不同的解;其中正確的是( )

A.①②B.②③C.②④D.③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分12)已知圓,圓,動圓與圓外切并且與圓內(nèi)切,圓心的軌跡為曲線

(Ⅰ)求的方程;

(Ⅱ)是與圓,圓都相切的一條直線,與曲線交于,兩點,當(dāng)圓的半徑最長時,求

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,平面,底面是直角梯形,其中,,為棱上的點,且

1)求證:平面;

2)求二面角的余弦值;

3)設(shè)為棱上的點(不與,重合),且直線與平面所成角的正弦值為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列中,,前項和為,且.

1)求,的值;

2)證明:數(shù)列是等差數(shù)列,并寫出其通項公式;

3)設(shè)),試問是否存在正整數(shù),(其中,使得,成等比數(shù)列?若存在,求出所有滿足條件的數(shù)對;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案