【題目】已知數(shù)列的前項(xiàng)和為,,數(shù)列滿足,點(diǎn)在直線上.
(1)求數(shù)列,的通項(xiàng)公式,;
(2)令,求數(shù)列的前項(xiàng)和;
(3)若,對(duì)所有的正整數(shù)都有成立,求的取值范圍.
【答案】(1),;(2);(3)
【解析】
(1)先根據(jù)和項(xiàng)與通項(xiàng)關(guān)系求數(shù)列的通項(xiàng)公式,再根據(jù)等差數(shù)列定義以及通項(xiàng)公式求的通項(xiàng)公式;
(2)根據(jù)錯(cuò)位相減法求數(shù)列的前項(xiàng)和;
(3)先根據(jù)作差法判定數(shù)列為單調(diào)遞減數(shù)列,再根據(jù)不等式恒成立轉(zhuǎn)化為,最后利用變量分離法求的取值范圍.
(1)∵,∴,即,
當(dāng)時(shí),,
∴,
∴,
∴是首項(xiàng)為,公比為2的等比數(shù)列,因此,,
因?yàn)?/span>在直線上,所以,
而,所以.
(2)∵,
∴③
因此④
③-④得:
,
∴.
(3)由(1)知,,
∵,
∴數(shù)列為單調(diào)遞減數(shù)列;
∴當(dāng)時(shí),.即的最大值為1.
由可得,,
而當(dāng)時(shí),當(dāng)且僅當(dāng)時(shí)取等號(hào),
∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某科室安排甲、乙、丙、丁四人國(guó)慶節(jié)放假期間(共放假八天)的值班表.已知甲、乙各值班四天,甲不能在第一天值班且甲、乙不在同一天值班;丙需要值班三天,且不能連續(xù)值班;丁需要值班五天;規(guī)定每天必須兩人值班.則符合條件的不同方案共有( )種.
A. 400 B. 700 C. 840 D. 960
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x2-mlnx,h(x)=x2-x+a.
(1)當(dāng)a=0時(shí),f(x)≥h(x)在(1,+∞)上恒成立,求實(shí)數(shù)m的取值范圍;
(2)當(dāng)m=2時(shí),若函數(shù)k(x)=f(x)-h(x)在區(qū)間(1,3)上恰有兩個(gè)不同零點(diǎn),求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
()若是函數(shù)的一個(gè)極值點(diǎn),求實(shí)數(shù)的值.
()設(shè),當(dāng)時(shí),函數(shù)的圖象恒不在直線的上方,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解甲、乙兩種離子在小鼠體內(nèi)的殘留程度,進(jìn)行如下試驗(yàn):將200只小鼠隨機(jī)分成兩組,每組100只,其中組小鼠給服甲離子溶液,組小鼠給服乙離子溶液.每只小鼠給服的溶液體積相同、摩爾濃度相同.經(jīng)過一段時(shí)間后用某種科學(xué)方法測(cè)算出殘留在小鼠體內(nèi)離子的百分比.根據(jù)試驗(yàn)數(shù)據(jù)分別得到如下直方圖:
記為事件:“乙離子殘留在體內(nèi)的百分比不低于”,根據(jù)直方圖得到的估計(jì)值為.
(1)求乙離子殘留百分比直方圖中的值;
(2)分別估計(jì)甲、乙離子殘留百分比的平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值為代表).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐中,底面為矩形,平面,為的中點(diǎn).
(1)證明:∥平面.
(2)設(shè)二面角為,,,求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),在一個(gè)周期內(nèi)的圖象如下圖所示.
(1)求函數(shù)的解析式;
(2)設(shè),且方程有兩個(gè)不同的實(shí)數(shù)根,求實(shí)數(shù)m的取值范圍和這兩個(gè)根的和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,,圓,一動(dòng)圓在軸右側(cè)與軸相切,同時(shí)與圓相外切,此動(dòng)圓的圓心軌跡為曲線C,曲線E是以,為焦點(diǎn)的橢圓。
(1)求曲線C的方程;
(2)設(shè)曲線C與曲線E相交于第一象限點(diǎn)P,且,求曲線E的標(biāo)準(zhǔn)方程;
(3)在(1)、(2)的條件下,直線與橢圓E相交于A,B兩點(diǎn),若AB的中點(diǎn)M在曲線C上,求直線的斜率的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直三棱柱ABC-A1B1C1中,D,E分別為BC,AC的中點(diǎn),AB=BC.
求證:(1)A1B1∥平面DEC1;
(2)BE⊥C1E.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com