【題目】宿州某中學N名教師參加“低碳節(jié)能你我他”活動,他們的年齡在25歲至50歲之間,按年齡分組:第1組[25,30),第2組[30,35),第3組[35,40),第4組[40,45),第5組[45,50),得到的頻率分布直方圖如圖所示.
下表是年齡的頻數(shù)分布表:
區(qū)間 | [25,30) | [30,35) | [35,40) | [40,45) | [45,50] |
人數(shù) | 25 | m | p | 75 | 25 |
(1)求正整數(shù)m,p,N的值;
(2)用分層抽樣的方法,從第1、3、5組抽取6人,則第1、3、5組各抽取多少人?
(3)在(2)的條件下,從這6人中隨機抽取2人參加學校之間的宣傳交流活動,求恰有1人在第3組的概率.
【答案】
(1)解:由頻率分布直方圖可知,[25,30)與[30,35)兩組的人數(shù)相同,
所以m=25.且p=25× =100.總人數(shù)N= =250
(2)解:因為第1,3,5組共有25+100+25=150人,
利用分層抽樣在150名員工中抽取6人,每組抽取的人數(shù)分別為:
第1組的人數(shù)為6× =1,第3組的人數(shù)為6× =4,第5組的人數(shù)為6× =1,
所以第1,3,5組分別抽取1人,4人,1人
(3)解:由(2)可設第1組的1人為A,第3組的4人為B1,B2,B3,B4,第5組的1人分別為C,
則從6人中抽取2人的所有可能結果為:
(B1,A),(B1,C),(B2,A),(B2,C),(B3,A),(B3,C),(B4,A),(B4,C),(A,C),
(B1,B2),(B1,B3),(B1,B4),(B2,B3),(B2,B4),(B3,B4),共有15種.
其中恰有1人年齡在第3組的所有結果為:
(B1,A),(B1,C),(B2,A),(B2,C),(B3,A),(B3,C),(B4,A),(B4,C),共有8種.
所以恰有1人年齡在第3組的概率為
【解析】(1)由頻率分布直方圖可知,[25,30)與[30,35)兩組的人數(shù)相同,由此能求出正整數(shù)m,p,N的值.(2)因為第1,3,5組共有150人,利用分層抽樣在150名員工中抽取6人,能求出第1,3,5組分別抽取的人數(shù).(3)由(2)可設第1組的1人為A,第3組的4人為B1 , B2 , B3 , B4 , 第5組的1人分別為C,利用列舉法能求出從6人中抽取2人,恰有1人年齡在第3組的概率.
【考點精析】掌握頻率分布直方圖是解答本題的根本,需要知道頻率分布表和頻率分布直方圖,是對相同數(shù)據(jù)的兩種不同表達方式.用緊湊的表格改變數(shù)據(jù)的排列方式和構成形式,可展示數(shù)據(jù)的分布情況.通過作圖既可以從數(shù)據(jù)中提取信息,又可以利用圖形傳遞信息.
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
以直角坐標系的原點為極點, 軸的正半軸為極軸建立極坐標系,已知點的直角坐標為,若直線的極坐標方程為曲線的參數(shù)方程是(為參數(shù)).
(1)求直線和曲線的普通方程;
(2)設直線和曲線交于兩點,求
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】以直角坐標系的原點為極點O,軸正半軸為極軸,已知點P的直角坐標為(1,-5),點C的極坐標為,若直線l經(jīng)過點P,且傾斜角為,圓C的半徑為4.
(1).求直線l的參數(shù)方程及圓C的極坐標方程;
(2).試判斷直線l與圓C有位置關系.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】函數(shù)f(x)=ex﹣alnx(其中a∈R,e為自然常數(shù))
①a∈R,使得直線y=ex為函數(shù)f(x)的一條切線;
②對a<0,函數(shù)f(x)的導函數(shù)f′(x)無零點;
③對a<0,函數(shù)f(x)總存在零點;
則上述結論正確的是 . (寫出所有正確的結論的序號)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,在四棱錐中,四邊形為菱形, 為正三角形,且分別為的中點, 平面, 平面.
(1)求證: 平面;
(2)求與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】觀察下列算式:13=1,23=3+5,33=7+9+11,43=13+15+17+19,…若某數(shù)n3按上述規(guī)律展開后,發(fā)現(xiàn)右邊含有“2017”這個數(shù),則:n= .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設a≥0,f(x)=x﹣1﹣ln2x+2alnx(x>0). (Ⅰ)令F(x)=xf′(x),討論F(x)在(0,+∞)內的單調性并求極值;
(Ⅱ)求證:當x>1時,恒有x>ln2x﹣2alnx+1.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=ax2+bx﹣a+2
(1)若關于x的不等式f(x)>0的解集是(﹣1,3),求實數(shù)a,b的值;
(2)若b=2,a>0,解關于x的不等式f(x)>0.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知奇函數(shù)f(x)在(﹣∞,0)∪(0,+∞)上有定義,在(0,+∞)上是增函數(shù),f(1)=0,又知函數(shù)g(θ)=sin2θ+mcosθ﹣2m, ,集合M={m|恒有g(θ)<0},N={m|恒有f(g(θ))<0},求M∩N.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com