【題目】如圖,在三棱錐中,,點(diǎn)分別是棱上的點(diǎn)滿足

(Ⅰ)證明:

(Ⅱ)求直線與平面所成角的正弦值.

【答案】(Ⅰ)見解析;(Ⅱ).

【解析】

(Ⅰ)取的中點(diǎn),連接、,由平面幾何的知識可得,再由線面垂直的判定與性質(zhì)即可得證;

(Ⅱ)過點(diǎn)的延長線于點(diǎn),連接,過點(diǎn)于點(diǎn),由面面垂直的判定與性質(zhì)可得平面,即可得是所求線面角,由平面幾何的知識結(jié)合余弦定理可得線段的長度,即可得解.

(Ⅰ)證明:取的中點(diǎn),連接、,因?yàn)?/span>

,所以平面,

又因?yàn)?/span>平面,故;

(Ⅱ)由(Ⅰ)知平面,且平面

故平面平面,過點(diǎn)的延長線于點(diǎn),連接,

由平面平面可得平面,

過點(diǎn)于點(diǎn),

所以平面,即與平面所成的角.

過點(diǎn)于點(diǎn),連接,

因?yàn)?/span>,

所以,

所以,所以,

因?yàn)?/span>,所以,,

所以,

,,

又由,

所以由余弦定理得

,

所以有,

所以直線與平面所成角的正弦值為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為(其中為參數(shù),且,在以為極點(diǎn)、軸的非負(fù)半軸為極軸的極坐標(biāo)系(兩種坐標(biāo)系取相同的單位長度)中,曲線的極坐標(biāo)方程為,設(shè)直線經(jīng)過定點(diǎn),且與曲線交于、兩點(diǎn).

(Ⅰ)求點(diǎn)的直角坐標(biāo)及曲線的直角坐標(biāo)方程;

(Ⅱ)求證:不論為何值時(shí),為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】武漢出現(xiàn)的新型冠狀病毒是一種可以通過飛沫傳播的變異病毒,某藥物研究所為篩查該新型冠狀病毒,需要檢驗(yàn)血液是否為陽性,現(xiàn)有份血液樣本,每份樣本取到的可能性均等,有以下兩種檢驗(yàn)方式:①逐份檢驗(yàn),則需要檢驗(yàn)n次;②混合檢驗(yàn),將其中份血液樣本分別取樣混合在一起檢驗(yàn).若檢驗(yàn)結(jié)果為陰性,這k份血液全為陰性,因此這k份血液樣本檢驗(yàn)一次就夠了,如果檢驗(yàn)結(jié)果為陽性,為了明確這k份血液究竟哪幾份為陽性,就要對這k份血液再逐份檢驗(yàn),此時(shí)這k份血液的檢驗(yàn)次數(shù)總共為.假設(shè)在接受檢驗(yàn)的血液樣本中,每份樣本的檢驗(yàn)結(jié)果是陰性還是陽性都是獨(dú)立的,且每份樣本是陽性結(jié)果的概率為.

1)假設(shè)有5份血液樣本,其中只有2份為陽性,若采取逐份檢驗(yàn)方式,求恰好經(jīng)過2次檢驗(yàn)就能把陽性樣本全部檢驗(yàn)出來的概率;

2)現(xiàn)取其中份血液樣本,記采用逐份檢驗(yàn)方式,樣本需要檢驗(yàn)的次數(shù)為,采用混合檢驗(yàn)方式,樣本需要檢驗(yàn)的總次數(shù)為.

i)試運(yùn)用概率統(tǒng)計(jì)知識,若,試求P關(guān)于k的函數(shù)關(guān)系式

ii)若,采用混合檢驗(yàn)方式可以使得這k份血液樣本需要檢驗(yàn)的總次數(shù)的期望值比逐份檢驗(yàn)的總次數(shù)期望值更少,求k的最大值.

參考數(shù)據(jù):,,,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】20194月,河北、遼寧、江蘇、福建、湖北、湖南、廣東、重慶等8省市發(fā)布高考綜合改革實(shí)施方案,決定從2018年秋季入學(xué)的高中一年級學(xué)生開始實(shí)施高考模式.所謂,即“3”是指考生必選語文、數(shù)學(xué)、外語這三科;“1”是指考生在物理、歷史兩科中任選一科;“2”是指考生在生物、化學(xué)、思想政治、地理四科中任選兩科.

1)若某考生按照模式隨機(jī)選科,求選出的六科中含有語文,數(shù)學(xué),外語,物理,化學(xué)的概率.

2)新冠疫情期間,為積極應(yīng)對新高考改革,某地高一年級積極開展線上教學(xué)活動(dòng).教育部門為了解線上教學(xué)效果,從當(dāng)?shù)夭煌瑢哟蔚膶W(xué)校中抽取高一學(xué)生2500名參加語數(shù)外的網(wǎng)絡(luò)測試,并給前400名頒發(fā)榮譽(yù)證書,假設(shè)該次網(wǎng)絡(luò)測試成績服從正態(tài)分布,且滿分為450.

①考生甲得知他的成績?yōu)?/span>270分,考試后不久了解到如下情況:此次測試平均成績?yōu)?/span>171分,351分以上共有57,請用你所學(xué)的統(tǒng)計(jì)知識估計(jì)甲能否獲得榮譽(yù)證書,并說明理由;

②考生丙得知他的實(shí)際成績?yōu)?/span>430分,而考生乙告訴考生丙:這次測試平均成績?yōu)?/span>201分,351分以上共有57,請結(jié)合統(tǒng)計(jì)學(xué)知識幫助丙同學(xué)辨別乙同學(xué)信息的真?zhèn)危⒄f明理由.

附:;

;

.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)求函數(shù)上的最值;

2)若對,總有成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,三棱錐SABC中,△ABC與△SBC都是邊長為1的正三角形,二面角ABCS的大小為,若S,A,B,C四點(diǎn)都在球O的表面上,則球O的表面積為(

A.πB.πC.πD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】過橢圓外一點(diǎn)作橢圓的切線,,切點(diǎn)分別為,,滿足.

1)求的軌跡方程

2)求的面積(用的橫坐標(biāo)表示)

3)當(dāng)運(yùn)動(dòng)時(shí),求面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx)=Acosωx)(A0ω0,0φπ)的圖象的一個(gè)最高點(diǎn)為(),與之相鄰的一個(gè)對稱中心為,將fx)的圖象向右平移個(gè)單位長度得到函數(shù)gx)的圖象,則(

A.gx)為偶函數(shù)

B.gx)的一個(gè)單調(diào)遞增區(qū)間為

C.gx)為奇函數(shù)

D.函數(shù)gx)在上有兩個(gè)零點(diǎn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地出現(xiàn)了蟲害,農(nóng)業(yè)科學(xué)家引入了蟲害指數(shù)數(shù)列表示第周的蟲害的嚴(yán)重程度,蟲害指數(shù)越大,嚴(yán)重程度越高,為了治理蟲害,需要環(huán)境整治、殺滅害蟲,然而由于人力資源有限,每周只能采取以下兩個(gè)策略之一:

策略:環(huán)境整治,蟲害指數(shù)數(shù)列滿足;

策略:殺滅害蟲,蟲害指數(shù)數(shù)列滿足

當(dāng)某周蟲害指數(shù)小于1時(shí),危機(jī)就在這周解除.

1)設(shè)第一周的蟲害指數(shù),用哪一個(gè)策略將使第二周的蟲害嚴(yán)重程度更。

2)設(shè)第一周的蟲害指數(shù),如果每周都采用最優(yōu)的策略,蟲害的危機(jī)最快在第幾周解除?

查看答案和解析>>

同步練習(xí)冊答案