關(guān)于的方程,給出下列四個命題:
①存在實數(shù),使得方程恰有2個不同實根; ②存在實數(shù),使得方程恰有4個不同實根;
③存在實數(shù),使得方程恰有5個不同實根; ④存在實數(shù),使得方程恰有8個不同實根;
其中假命題的個數(shù)是( )
A.0 B.1 C.2 D.3
A
【解析】
試題分析:關(guān)于x的方程可化為(1)
或(-1<x<1)(2)
①當(dāng)k=-2時,方程(1)的解為±,方程(2)無解,原方程恰有2個不同的實根;
②當(dāng)k=時,方程(1)有兩個不同的實根±,方程(2)有兩個不同的實根±,即原方程恰有4個不同的實根;
③當(dāng)k=0時,方程(1)的解為-1,+1,±,方程(2)的解為x=0,原方程恰有5個不同的實根;
④當(dāng)k=時,方程(1)的解為±,±,方程(2)的解為±,±,
即原方程恰有8個不同的實根.
∴四個命題都是真命題.故選A。
考點:本題主要考查函數(shù)方程思想,分類討論思想。
點評:中檔題,通過討論x的范圍,將方程中的絕對值符號去掉,這是一般思路。而k實施分類討論又是基于函數(shù)值域。
科目:高中數(shù)學(xué) 來源: 題型:
(06年湖北卷)關(guān)于的方程,給出下列四個命題: ( )
①存在實數(shù),使得方程恰有2個不同的實根;
②存在實數(shù),使得方程恰有4個不同的實根;
③存在實數(shù),使得方程恰有5個不同的實根;
④存在實數(shù),使得方程恰有8個不同的實根;
其中假命題的個數(shù)是
A.0 B.1 C.2 D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
關(guān)于的方程,給出下列四個命題:
①存在實數(shù),使得方程恰有2個不同的實根;
②存在實數(shù),使得方程恰有4個不同的實根;
③存在實數(shù),使得方程恰有5個不同的實根;
④存在實數(shù),使得方程恰有8個不同的實根.
其中假命題的個數(shù)是 ( )
A.0 B.1 C.2 D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆甘肅省天水市高一上學(xué)期期中數(shù)學(xué)試卷(解析版) 題型:選擇題
關(guān)于的方程,給出下列四個命題:
①存在實數(shù),使得方程恰有2個不同的實根;
②存在實數(shù),使得方程恰有4個不同的實根;
③存在實數(shù),使得方程恰有5個不同的實根;
④存在實數(shù),使得方程恰有8個不同的實根;
其中假命題的個數(shù)是
A.0 B.1 C.2 D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年黑龍江省高三第三次模擬考試文科數(shù)學(xué)試卷(解析版) 題型:選擇題
關(guān)于的方程,給出下列四個命題:
①存在實數(shù),使得方程恰有2個不同的實根;
②存在實數(shù),使得方程恰有4個不同的實根;
③存在實數(shù),使得方程恰有5個不同的實根;
④存在實數(shù),使得方程恰有8個不同的實根.
其中假命題的個數(shù)是
A. 0 B. 1 C. 2 D. 3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年安徽省高三上學(xué)期期中考試?yán)砜茢?shù)學(xué) 題型:選擇題
關(guān)于的方程,給出下列四個命題:
①存在實數(shù),使得方程恰有2個不同實根;
②存在實數(shù),使得方程恰有4個不同實根;
③存在實數(shù),使得方程恰有5個不同實根;
④存在實數(shù),使得方程恰有8個不同實根;
其中假命題的個數(shù)是 ( )
A.0 B.1 C.2 D.3
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com