【題目】一個孩子的身高與年齡(周歲)具有相關(guān)關(guān)系,根據(jù)所采集的數(shù)據(jù)得到線性回歸方程,則下列說法錯誤的是(

A.回歸直線一定經(jīng)過樣本點(diǎn)中心

B.斜率的估計(jì)值等于6.217,說明年齡每增加一個單位,身高就約增加6.217個單位

C.年齡為10時,求得身高是,所以這名孩子的身高一定是

D.身高與年齡成正相關(guān)關(guān)系

【答案】C

【解析】

利用線性回歸方程過樣本中心點(diǎn)可判斷A;由回歸方程求出的數(shù)值是估計(jì)值可判斷B、C;根據(jù)回歸方程的一次項(xiàng)系數(shù)可判斷D;

對于A,線性回歸方程一定過樣本中心點(diǎn),故A正確;

對于B,由于斜率是估計(jì)值,可知B正確;

對于C,當(dāng)時,求得身高是是估計(jì)值,故C錯誤;

對于D,線性回歸方程的一次項(xiàng)系數(shù)大于零,故身高與年齡成正相關(guān)關(guān)系,故D正確;

故選:C

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司的電子新產(chǎn)品未上市時,原定每件售價100元,經(jīng)過市場調(diào)研發(fā)現(xiàn),該電子新產(chǎn)品市場潛力很大,該公司決定從第一周開始銷售時,該電子產(chǎn)品每件售價比原定售價每周漲價4元,5周后開始保持120元的價格平穩(wěn)銷售,10周后由于市場競爭日益激烈,每周降價2元,直到15周結(jié)束,該產(chǎn)品不再銷售.

(Ⅰ)求售價(單位:元)與周次)之間的函數(shù)關(guān)系式;

(Ⅱ)若此電子產(chǎn)品的單件成本(單位:元)與周次之間的關(guān)系式為,,試問:此電子產(chǎn)品第幾周的單件銷售利潤(銷售利潤售價成本)最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),其中.

1)討論的極值點(diǎn)的個數(shù);

2)若,,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)數(shù)列的前項(xiàng)和,已知.

1)求證:數(shù)列為等差數(shù)列,并求出其通項(xiàng)公式;

2)設(shè),又對一切恒成立,求實(shí)數(shù)的取值范圍;

3)已知為正整數(shù)且,數(shù)列共有項(xiàng),設(shè),又,求的所有可能取值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),且

求定義域;

若函數(shù)的反函數(shù)是其本身,求a的值;

求函數(shù)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,AOB是一塊半徑為r的扇形空地,.某單位計(jì)劃在空地上修建一個矩形的活動場地OCDE及一矩形停車場EFGH,剩余的地方進(jìn)行綠化.若,設(shè)

(Ⅰ)記活動場地與停車場占地總面積為,求的表達(dá)式;

(Ⅱ)當(dāng)為何值時,可使活動場地與停車場占地總面積最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給定平面上的點(diǎn)集,中任三點(diǎn)均不共線。將中所有的點(diǎn)任意分成83組,使得每組至少有3個點(diǎn),且每點(diǎn)恰好屬于一組,然后將在同一組的任兩點(diǎn)用一條線段相連,不在同一組的兩點(diǎn)不連線段,這樣得到一個圖案。不同的分組方式得到不同的圖案。將圖案中所含的以中的點(diǎn)為頂點(diǎn)的三角形的個數(shù)記為。

(1)求的最小值;

(2)設(shè)是使的一個圖案,若將中的線段(指以的點(diǎn)為端點(diǎn)的線段)用4種顏色染色,每條線段恰好染一種顏色。證明存在一個染色方案,使染色后不含以的點(diǎn)為頂點(diǎn)的三邊顏色相同的三角形。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(多選題)下列說法中正確的是(

A.在頻率分布直方圖中,中位數(shù)左邊和右邊的直方圖的面積相等.

B.A、B為互斥事件,則A的對立事件與B的對立事件一定互斥.

C.某個班級內(nèi)有40名學(xué)生,抽10名同學(xué)去參加某項(xiàng)活動,則每4人中必有1人抽中.

D.若回歸直線的斜率,則變量正相關(guān).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),,在處的切線方程為

(1),證明:;

(2)若方程有兩個實(shí)數(shù)根,且,證明:

查看答案和解析>>

同步練習(xí)冊答案