【題目】我國(guó)古代數(shù)學(xué)典籍《九章算術(shù)》“盈不足”中有一道兩鼠穿墻問題:“今有垣厚十尺,兩鼠對(duì)穿,初日各一尺,大鼠日自倍,小鼠日自半,問幾何日相逢?”現(xiàn)用程序框圖描述,如圖所示,則輸出結(jié)果n=(

A.4
B.5
C.2
D.3

【答案】A
【解析】解:模擬執(zhí)行程序,可得
a=1,A=1,S=0,n=1
S=2
不滿足條件S≥10,執(zhí)行循環(huán)體,n=2,a= ,A=2,S=
不滿足條件S≥10,執(zhí)行循環(huán)體,n=3,a= ,A=4,S=
不滿足條件S≥10,執(zhí)行循環(huán)體,n=4,a= ,A=8,S=
滿足條件S≥10,退出循環(huán),輸出n的值為4.
故選:A.
模擬執(zhí)行程序,依次寫出每次循環(huán)得到的a,A,S的值,當(dāng)S= 時(shí),滿足條件S≥10,退出循環(huán),輸出n的值為4,從而得解.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}滿足an+2=an+1﹣an , 且a1=2,a2=3,Sn為數(shù)列{an}的前n項(xiàng)和,則S2016的值為(
A.0
B.2
C.5
D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=1﹣ ,g(x)=ln(ax2﹣3x+1),若對(duì)任意的x1∈[0,+∞),都存在x2∈R,使得f(x1)=g(x2)成立,則實(shí)數(shù)a的最大值為(
A.2
B.
C.4
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=(1﹣ax)ln(x+1)﹣bx,其中a和b是實(shí)數(shù),曲線y=f(x)恒與x軸相切于坐標(biāo)原點(diǎn).
(1)求常數(shù)b的值;
(2)當(dāng)a=1時(shí),討論函數(shù)f(x)的單調(diào)性;
(3)當(dāng)0≤x≤1時(shí)關(guān)于x的不等式f(x)≥0恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知偶函數(shù)上單調(diào)遞增,則

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(1)已知命題:實(shí)數(shù)滿足,命題:實(shí)數(shù)滿足方程表示的焦點(diǎn)在軸上的橢圓,且的充分不必要條件,求實(shí)數(shù)的取值范圍;

(2)設(shè)命題:關(guān)于的不等式的解集是;:函數(shù)的定義域?yàn)?/span>.若是真命題,是假命題,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(1)雙曲線的離心率為_____________

(2)點(diǎn)P是橢圓上一點(diǎn),分別是橢圓的左、右焦點(diǎn),若,則的大小______

(3)如果是拋物線y2=4x上的點(diǎn),它們的橫坐標(biāo)依次為,F(xiàn)是拋物線的焦點(diǎn),若_______________

(4)若x,y滿足約束條件,則z=x2+y2的最大值為______________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=m﹣|x﹣2|,m∈R,且f(x+2)≥0的解集為[﹣1,1].
(1)求m的值;
(2)若a,b,c∈R,且 =m,求證:a+2b+3c≥9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=cos(2x﹣ )﹣cos2x.
(1)求f( )的值;
(2)求函數(shù)f(x)的最小正周期和單調(diào)遞增區(qū)間.

查看答案和解析>>

同步練習(xí)冊(cè)答案