【題目】在直三棱柱ABCA1B1C1中,AB=1,AC=2,BC,DE分別是AC1,BB1的中點(diǎn),則直線DE與平面BB1C1C所成角的正弦值為________

【答案】

【解析】

如圖,取AC的中點(diǎn)F,連接DF,BF,則DFBEDFBE,∴DEBF,∴BF與平面BB1C1C所成角的正弦值為所求.∵AB=1,BC,AC=2,∴ABBC,又ABBB1,∴AB⊥平面BB1C1C.作GFABBC于點(diǎn)G,則GF⊥平面BB1C1C,∴∠FBG為直線BF與平面BB1C1C所成的角.由條件知BGBC,GFAB,∴tan∠FBG,∴∠FBG,∴sin∠FBG=sin,即直線DE與平面BB1C1C所成角的正弦值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù) .

)討論的單調(diào)性;

)當(dāng)時(shí),若 ,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為(其中為參數(shù)),以為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為(其中為常數(shù)).

1)若直線與曲線恰好有一個(gè)公共點(diǎn),求實(shí)數(shù)的值;

2)若,求直線被曲線截得的弦長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓 (a>b>0)的離心率為.

(Ⅰ)若原點(diǎn)到直線x+y-b=0的距離為,求橢圓的方程;

(Ⅱ)設(shè)過(guò)橢圓的右焦點(diǎn)且傾斜角為45°的直線l和橢圓交于A,B兩點(diǎn),對(duì)于橢圓上任意一點(diǎn)M,總存在實(shí)數(shù)λ、μ,使等式成立,求λ2+μ2的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)f(x)=a-2ln x(a∈R).

(Ⅰ)當(dāng)a=2時(shí),求曲線f(x)在x=2處的切線方程;

(Ⅱ)若a>,且m,n分別為f(x)的極大值和極小值,S=m-n,求證:S<.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知為自然對(duì)數(shù)的底數(shù)).

(Ⅰ)討論的單調(diào)性;

(Ⅱ)若有兩個(gè)零點(diǎn)的取值范圍;

2在(1)的條件下,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知曲線C的極坐標(biāo)方程是ρ=2,以極點(diǎn)為原點(diǎn),極軸為x軸的正半軸建立平面直角坐標(biāo)系,直線l的參數(shù)方程為(t為參數(shù)).

(1)寫(xiě)出直線l的普通方程與曲線C的直角坐標(biāo)方程;

(2)設(shè)曲線C經(jīng)過(guò)伸縮變換得到曲線,設(shè)M(x,y)為上任意一點(diǎn),求的最小值,并求相應(yīng)的點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(導(dǎo)學(xué)號(hào):05856263)

已知拋物線y2=2px(p>0)的準(zhǔn)線與x軸交于點(diǎn)N,過(guò)點(diǎn)N作圓M:(x-2)2y2=1的兩條切線,切點(diǎn)為P、Q,且|PQ|=.

(Ⅰ)求拋物線的方程;

(Ⅱ)過(guò)拋物線的焦點(diǎn)F作斜率為k1的直線與拋物線交于A、B兩點(diǎn),A、B兩點(diǎn)的橫坐標(biāo)均不為2,連接AM,BM并延長(zhǎng)分別交拋物線于C、D兩點(diǎn),設(shè)直線CD的斜率為k2,問(wèn)是否為定值?若是,求出該定值;若不是,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】[選修4-5:不等式選講]

已知函數(shù)f(x)=|2x+1||2x﹣3|,g(x)=|x+1|+|x﹣a|

(l)求fx≥1的解集;

(2)若對(duì)任意的tR,sR,都有g(s)f(t).求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案