【題目】某研究機構(gòu)對某校高二文科學生的記憶力x和判斷力y進行統(tǒng)計分析,得下表數(shù)據(jù).

x

6

8

10

12

y

2

3

5

6

(1)請畫出上表數(shù)據(jù)的散點圖;

(2)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程;

(3)試根據(jù)(2)中求出的線性回歸方程,預測記憶力為14的學生的判斷力.

【答案】(1)見解析; (2)=0.7x-2.3; (3)7.5.

【解析】

(1)建立直角坐標系,畫出散點圖。

(2)分別計算出=9,=4,

(xi)(y-)=(-3) ×(-2)+(-1) × (-1)+1×1+3×2=14

(xi)2=(-3)2+(-1)2+1+32=20,所以=0.7,由此得出回歸直線方程。

(3)將x=14代入回歸直線方程計算即可

(1)散點圖如圖所示.

(2)=9,=4,

(xi)(y-)=(-3) ×(-2)+(-1) × (-1)+1×1+3×2=14

(xi)2=(-3)2+(-1)2+1+32=20,所以=0.7,

=4-0.7×9=-2.3,

故線性回歸方程為=0.7x-2.3.

(3)當x=14時,=0.7×14-2.3=7.5,故可預測記憶力為14的學生的判斷力為7.5.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】從某居民區(qū)隨機抽取10個家庭,獲得第i個家庭的月收入xi單位:千元與月儲蓄yi單位:千元的數(shù)據(jù)資料,算得=80, =20, =184, =720

求家庭的月儲蓄y對月收入x的線性回歸方程y=bx+a;

判斷變量x與y之間是正相關(guān)還是負相關(guān);

若該居民區(qū)某家庭月收入為7千元,預測該家庭的月儲蓄

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在一個特定時段內(nèi),以點為中心的海里以內(nèi)海域被設(shè)為警戒水域.點正北50海里處有一個雷達觀測站.某時刻測得一艘勻速直線行駛的船只位于點北偏東且與點相距海里的位置,經(jīng)過分鐘又測得該船已行駛到點北偏東且與點相距海里的位置

(1)求該船的行駛速度(單位:海里/小時);

(2)若該船不改變航行方向繼續(xù)行駛,判斷它是否會進入警戒水域,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)(其中a0,且a≠1).

(1)請你推測g(5)能否用f(2),f(3),g(2),g(3)來表示;

(2)如果(1)中獲得了一個結(jié)論,請你推測能否將其推廣.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為評估設(shè)備生產(chǎn)某種零件的性能,從設(shè)備生產(chǎn)零件的流水線上隨機抽取100件零件作為樣本,測量其直徑后,整理得到下表:

直徑mm

58

59

61

62

63

64

65

66

67

68

69

70

71

73

合計

件數(shù)

1

1

3

5

6

19

33

18

4

4

2

1

2

1

100

經(jīng)計算,樣本的平均值,標準差,以頻率值作為概率的估計值.

(1)為評判一臺設(shè)備的性能,從該設(shè)備加工的零件中任意抽取一件,記其直徑為,并根據(jù)以下不等式進

行評判(表示相應事件的概率);①;②;③.

評判規(guī)則為:若同時滿足上述三個不等式,則設(shè)備等級為甲;僅滿足其中兩個,則等級為乙;若僅滿足其中一個,則等級為丙;若全部不滿足,則等級為丁,試判斷設(shè)備的性能等級.

(2)將直徑小于等于或直徑大于的零件認為是次品.

ⅰ)從設(shè)備的生產(chǎn)流水線上隨意抽取2件零件,計算其中次品個數(shù)的數(shù)學期望

ⅱ)從樣本中隨意抽取2件零件,計算其中次品個數(shù)的數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】研究變量,得到一組樣本數(shù)據(jù),進行回歸分析有以下結(jié)論

殘差平方和越小的模型,擬合的效果越好;

用相關(guān)指數(shù)來刻畫回歸效果,越小說明擬合效果越好;

在回歸直線方程中,當解釋變量每增加1個單位時,預報變量平均增加0.2個單位

若變量之間的相關(guān)系數(shù)為,則變量之間的負相關(guān)很強,以上正確說法的個數(shù)是( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)),若有且僅有兩個整數(shù) ,使得,則的取值范圍為

A. [ B. [ C. [ D. [

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓C (a>b>0)的一個頂點為A(2,0),離心率為.直線yk(x-1)與橢圓C交于不同的兩點M,N.

(1)求橢圓C的方程;

(2)當△AMN的面積為時,求k的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=lnx﹣a(x﹣1),g(x)=ex
(1)當a=2時,求函數(shù)f(x)的最值;
(2)當a≠0時,過原點分別作曲線y=f(x)與y=g(x)的切線l1 , l2 , 已知兩切線的斜率互為倒數(shù),證明: <a<

查看答案和解析>>

同步練習冊答案