【題目】已知關于的二次函數(shù).

(1)設集合,分別從集合中隨機取一個數(shù)作為,求函數(shù)在區(qū)間上是增函數(shù)的概率;

(2)設點是區(qū)域內的隨機點,記事件“函數(shù)有兩個零點,其中一個大于1,另一個小于1”為事件,求事件發(fā)生的概率.

【答案】(1)(2)

【解析】試題分析:(1)基本事件的總數(shù)有種,要函數(shù)在給定區(qū)間上單調遞增,則需開口向上,且對稱軸要小于或等于,由此得到的大小關系,并通過列舉得出符合題意的事件總數(shù),利用古典概型計算公式計算得到概率.(2)“函數(shù)有兩個零點,其中一個大于1,另一個小于1”,由于函數(shù)開口向上,故只需,畫出可行域及符合題意的范圍,利用面積比得到所求的概率.

試題解析:

(1)記“函數(shù)在區(qū)間上是增函數(shù)”為事件

若使事件發(fā)生,由于,則只需使得,即

所以,事件包含的基本事件分別為,共5個;

所有基本事件共個.

由古典概型的概率計算公式得, ,

綜上,函數(shù)在區(qū)間上是增函數(shù)的概率為;

(2)若使事件發(fā)生,由于,所以只需

所有結果構成的平面區(qū)域為,事件包含的結果構成的平面區(qū)域為

如圖所示:

由幾何概型的概率計算公式得,

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】隨機抽取了40輛汽車在經(jīng)過路段上某點是的車速(),現(xiàn)將其分成六段:,

后得到如圖所示的頻率分布直方圖.

I)現(xiàn)有某汽車途經(jīng)該點,則其速度低于80的概率約是多少?

II)根據(jù)頻率分布直方圖,抽取的40輛汽車經(jīng)過該點的平均速度是多少?

III)在抽取的40輛汽車且速度在)內的汽車中任取2輛,求這2輛車車速都在)內的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知以為圓心的圓及其上一點.

(1)是否存在直線與圓有兩個交點,并且,若有,求此直線方程,若沒有,請說明理由;

(2)設點滿足:存在圓上的兩點使得,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在直角坐標系中,設傾斜角為的直線的參數(shù)方程為為參數(shù))與曲線為參數(shù))相交于不同的兩點

(1)若,求線段的中點的直角坐標;

(2)若直線的斜率為2,且過已知點,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在矩形中, , ,沿對角線折起,使點移到點,且在平面上的射影恰好落在上.

(1)求證: ;

(2)求點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù).

(1)當時,求在區(qū)間上的最值;

(2)討論的單調性;

(3)當時,有恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1)當時,求函數(shù)處的切線方程;

(2)令,求函數(shù)的極值;

(3)若,正實數(shù)滿足,證明:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知等比數(shù)列的各項均為正數(shù),且, .

(1)求數(shù)列的通項公式;

(2)若數(shù)列滿足: ,求數(shù)列的前項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率為,以為圓心,橢圓的短半軸長為半徑的圓與直線相切.

1)求橢圓的標準方程;

2)已知點,和平面內一點,過點任作直線與橢圓相交于兩點,設直線的斜率分別為,,試求滿足的關系式.

查看答案和解析>>

同步練習冊答案