【題目】在△ABC中,A、B、C的對邊分別為a、b、c,且 成等差數(shù)列.
(Ⅰ)求B的值;
(Ⅱ)求的范圍
【答案】(1) (2)
【解析】試題分析:(I)根據(jù)等差數(shù)列的性質(zhì)可知,利用正弦定理把邊轉(zhuǎn)化成角的正弦,化簡整理得,求得,進(jìn)而求得;(II)先利用二倍角公式及輔助角對原式進(jìn)行化簡整理,進(jìn)而根據(jù)的范圍和正弦函數(shù)的單調(diào)性求得的范圍.
試題解析:(Ⅰ)∵acosC,bcosB,ccosA成等差數(shù)列,
∴acosC+ccosA=2bcosB,
由正弦定理得,a=2RsinA,b=2RsinB,c=2RsinC,
代入得:2RsinAcosC+2RcosAsinC=4RsinBcosB,
即:sin(A+C)=sinB,
∴sinB=2sinBcosB,
又在△ABC中,sinB≠0,
∴,
∵0<B<π,
∴;
(Ⅱ)∵,
∴
∴
=
=,
∵,
∴
∴2sin2A+cos(A﹣C)的范圍是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在發(fā)生某公共衛(wèi)生事件期間,有專業(yè)機(jī)構(gòu)認(rèn)為該事件在一段時(shí)間沒有發(fā)生在規(guī)模群體感染的標(biāo)志為“連續(xù)10天,每天新增疑似病例不超過7人”。根據(jù)過去10天甲、乙、丙、丁四地新增疑似病例數(shù)據(jù),一定符合該標(biāo)志的是 ( )
A. 甲地:總體均值為3,中位數(shù)為4
B. 乙地:總體均值為1,總體方差大于0
C. 丙地:中位數(shù)為2,眾數(shù)為3
D. 丁地:總體均值為2,總體方差為3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有下列命題:
①函數(shù)的圖象與的圖象恰有個(gè)公共點(diǎn);
②函數(shù)有個(gè)零點(diǎn);
③若函數(shù)與的圖像關(guān)于直線對稱,則函數(shù)與的圖象也關(guān)于直線對稱;
④函數(shù)的圖象是由函數(shù)的圖象水平向右平移一個(gè)單位后,將所得圖象在軸右側(cè)部分沿軸翻折到軸左側(cè)替代軸左側(cè)部分圖象,并保留右側(cè)部分而得到的.其中錯(cuò)誤的命題有___________.(填寫所有錯(cuò)誤的命題的序號(hào))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知復(fù)數(shù)z=1+mi(i是虛數(shù)單位,m∈R),且 為純虛數(shù)( 是z的共軛復(fù)數(shù)).
(1)設(shè)復(fù)數(shù) ,求|z1|;
(2)設(shè)復(fù)數(shù) ,且復(fù)數(shù)z2所對應(yīng)的點(diǎn)在第四象限,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=cosxsin(x+)﹣cos2x+,x∈R.
(1)求f(x)的單調(diào)遞增區(qū)間;
(2)在銳角△ABC中,角A,B,C的對邊分別a,b,c,若f(A)=,a=,求△ABC面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C: =1(a>b>0)過點(diǎn)( ,1),且以橢圓短軸的兩個(gè)端點(diǎn)和一個(gè)焦點(diǎn)為頂點(diǎn)的三角形是等腰直角三角形.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)M(x,y)是橢圓C上的動(dòng)點(diǎn),P(p,0)是x軸上的定點(diǎn),求|MP|的最小值及取最小值時(shí)點(diǎn)M的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=|x-1|+|2x-1|.
(Ⅰ)若對 x>0,不等式f(x)≥tx恒成立,求實(shí)數(shù)t的最大值M;
(Ⅱ)在(Ⅰ)成立的條件下,正實(shí)數(shù)a,b滿足a2+b2=2M.證明:a+b≥2ab.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)及圓: .
(1)若直線過點(diǎn)且與圓心的距離為,求直線的方程.
(2)設(shè)直線與圓交于, 兩點(diǎn),是否存在實(shí)數(shù),使得過點(diǎn)的直線垂直平分弦?若存在,求出實(shí)數(shù)的值;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com