【題目】已知正四棱柱ABCD﹣A1B1C1D1中,AA1=2AB,則CD與平面BDC1所成角的正弦值等于( )
A.
B.
C.
D.
【答案】A
【解析】解:設AB=1,則AA1=2,分別以 的方向為x軸、y軸、z軸的正方向建立空間直角坐標系,
如下圖所示:
則D(0,0,2),C1(1,0,0),B(1,1,2),C(1,0,2),
=(1,1,0), =(1,0,﹣2), =(1,0,0),
設 =(x,y,z)為平面BDC1的一個法向量,則 ,即 ,取 =(2,﹣2,1),
設CD與平面BDC1所成角為θ,則sinθ=| |= ,
故選A.
【考點精析】通過靈活運用空間角的異面直線所成的角和用空間向量求直線與平面的夾角,掌握已知為兩異面直線,A,C與B,D分別是上的任意兩點,所成的角為,則;設直線的方向向量為,平面的法向量為,直線與平面所成的角為,與的夾角為, 則為的余角或的補角的余角.即有:即可以解答此題.
科目:高中數(shù)學 來源: 題型:
【題目】已知圓心在軸上的圓與直線切于點.
(1)求圓的標準方程;
(2)已知,經過原點,且斜率為正數(shù)的直線與圓交于兩點.
(ⅰ)求證: 為定值;
(ⅱ)求的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某玩具生產公司每天計劃生產衛(wèi)兵、騎兵、傘兵這三種玩具共個,生產一個衛(wèi)兵需分鐘,生產一個騎兵需分鐘,生產一個傘兵需分鐘,已知總生產時間不超過小時,若生產一個衛(wèi)兵可獲利潤元,生產一個騎兵可獲利潤元,生產一個傘兵可獲利潤元.
(1)用每天生產的衛(wèi)兵個數(shù)與騎兵個數(shù)表示每天的利潤(元);
(2)怎么分配生產任務才能使每天的利潤最大,最大利潤是多少?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】對于定義在區(qū)間D上的函數(shù)f(x),若存在閉區(qū)間[a,b]D和常數(shù)c,使得對任意x1∈[a,b],都有f(x1)=c,且對任意x2∈D,當x2[a,b]時,f(x2)<c恒成立,則稱函數(shù)f(x)為區(qū)間D上的“平頂型”函數(shù).給出下列結論:
①“平頂型”函數(shù)在定義域內有最大值;
②函數(shù)f(x)=x-|x-2|為R上的“平頂型”函數(shù);
③函數(shù)f(x)=sin x-|sin x|為R上的“平頂型”函數(shù);
④當t≤時,函數(shù)f(x)=是區(qū)間[0,+∞)上的“平頂型”函數(shù).
其中正確的結論是________.(填序號)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù),的圖象在點處的切線與直線平行.
(1)求的值;
(2)若函數(shù),且在區(qū)間上是單調函數(shù),求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四棱錐P﹣ABCD中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M為線段AD上一點,AM=2MD,N為PC的中點.
(1)證明:MN∥平面PAB;
(2)求直線AN與平面PMN所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四棱柱ABCD﹣A1B1C1D1的底面ABCD是正方形,O為底面中心,A1O⊥平面ABCD, .
(1)證明:A1C⊥平面BB1D1D;
(2)求平面OCB1與平面BB1D1D的夾角θ的大。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】函數(shù)f(x)=sin(2x+φ)(|φ|< )向左平移 個單位后是奇函數(shù),則函數(shù)f(x)在[0, ]上的最小值為
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com