【題目】設(shè)定義在R上的偶函數(shù)f(x),滿足對任意x∈R都有f(t)=f(2﹣t)且x∈(0,1]時,f(x)= ,a=f( ),b=f( ),c=f( ),用“<“表示a,b,c的大小關(guān)系是

【答案】c<a<b
【解析】解:∵定義在R上的偶函數(shù)y=f(x),滿足對任意t∈R都有f(t)=f(2﹣t),
∴f(2+t)=f(2﹣2﹣t)=f(﹣t)=f(t),
∴f(x)是以2為周期的函數(shù),
∵x∈[0,1]時,f(x)= ,
f′(x)= ≥0在[0,1]恒成立,
故f(x)在[0,1]遞增,
由a=f( )=f(1+ )=f(﹣ )=f( ),
b=f( )=f(1+ )=f(﹣ )=f( ),
c=f( )=f( ),
∴c<a<b,
所以答案是:c<a<b.
【考點精析】關(guān)于本題考查的函數(shù)奇偶性的性質(zhì),需要了解在公共定義域內(nèi),偶函數(shù)的加減乘除仍為偶函數(shù);奇函數(shù)的加減仍為奇函數(shù);奇數(shù)個奇函數(shù)的乘除認(rèn)為奇函數(shù);偶數(shù)個奇函數(shù)的乘除為偶函數(shù);一奇一偶的乘積是奇函數(shù);復(fù)合函數(shù)的奇偶性:一個為偶就為偶,兩個為奇才為奇才能得出正確答案.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=(sinx+ cosx)2﹣2.
(1)當(dāng)x∈[0, ]時,求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)若x∈[﹣ ],求函數(shù)g(x)= f2(x)﹣f(x+ )﹣1的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)是偶函數(shù),且f(x+ )=f( ﹣x),當(dāng)﹣ ≤x≤0時,f(x)=( x﹣1,記an=f( ),n∈N+ , 則a2046的值為( )
A.1﹣
B.1﹣
C.﹣1
D.﹣1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)若曲線處的切線與直線垂直,求的值;

(Ⅱ)當(dāng)時,求證:存在實數(shù)使.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某集團(tuán)公司為了獲得更大的收益,決定以后每年投入一筆資金用于廣告促銷.經(jīng)過市場調(diào)查,每年投入廣告費t百萬元,可增加銷售額約(2t+ )百萬元(t≥0).
(1)若公司當(dāng)年新增收益不少于1.5百萬元,求每年投放廣告費至少多少百萬元?
(2)現(xiàn)公司準(zhǔn)備投入6百萬元分別用于當(dāng)年廣告費和新產(chǎn)品開發(fā),經(jīng)預(yù)測,每投入新產(chǎn)品開發(fā)費x百萬元,可增加銷售額約( +3x+ )百萬元,問如何分配這筆資金,使該公司獲得新增收益最大?(新增收益=新增銷售額﹣投入)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ex , 對于實數(shù)m、n、p有f(m+n)=f(m)+f(n),f(m+n+p)=f(m)+f(n)+f(p),則p的最大值等于

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),

(Ⅰ)若直線 與曲線分別交于兩點.設(shè)曲線

在點處的切線為 在點處的切線為.

(。┊(dāng)時,若 ,求的值;

(ⅱ)若,求的最大值;

(Ⅱ)設(shè)函數(shù)在其定義域內(nèi)恰有兩個不同的極值點, ,且

,且恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在棱長為1的正方體ABCDA1B1C1D1中,E為棱BC的中點,點F是棱CD上的動點,試確定點F的位置,使得D1E⊥平面AB1F.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)滿足:對于任意正數(shù),都有,且,則稱函數(shù)為“L函數(shù)”.

1)試判斷函數(shù)是否是“L函數(shù)”;

2)若函數(shù)為“L函數(shù)”,求實數(shù)a的取值范圍;

(3)若函數(shù)L函數(shù),且,求證:對任意,都有

查看答案和解析>>

同步練習(xí)冊答案