【題目】天氣預(yù)報(bào)說(shuō),未來(lái)三天每天下雨的概率都是0.6,用1、2、3、4表示不下雨,用5、6、7、8、9、0表示下雨,利用計(jì)算機(jī)生成下列20組隨機(jī)數(shù),則未來(lái)三天恰有兩天下雨的概率大約是 .
757 220 582 092 103 000 181 249 414 993
010 732 680 596 761 835 463 521 186 289.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】【2017廣東佛山二模】某保險(xiǎn)公司針對(duì)企業(yè)職工推出一款意外險(xiǎn)產(chǎn)品,每年每人只要交少量保費(fèi),發(fā)生意外后可一次性獲賠50萬(wàn)元.保險(xiǎn)公司把職工從事的所有崗位共分為、、三類(lèi)工種,根據(jù)歷史數(shù)據(jù)統(tǒng)計(jì)出三類(lèi)工種的每賠付頻率如下表(并以此估計(jì)賠付概率).
(Ⅰ)根據(jù)規(guī)定,該產(chǎn)品各工種保單的期望利潤(rùn)都不得超過(guò)保費(fèi)的20%,試分別確定各類(lèi)工種每張保單保費(fèi)的上限;
(Ⅱ)某企業(yè)共有職工20000人,從事三類(lèi)工種的人數(shù)分布比例如圖,老板準(zhǔn)備為全體職工每人購(gòu)買(mǎi)一份此種保險(xiǎn),并以(Ⅰ)中計(jì)算的各類(lèi)保險(xiǎn)上限購(gòu)買(mǎi),試估計(jì)保險(xiǎn)公司在這宗交易中的期望利潤(rùn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本題滿(mǎn)分12分)某食品廠為了檢查一條自動(dòng)包裝流水線的生產(chǎn)情況,隨機(jī)抽取該流水線上件產(chǎn)品作為樣本稱(chēng)出它們的重量(單位:克),重量的分組區(qū)間為,, ,,由此得到樣本的頻率分布直方圖,如圖所示.
(1)根據(jù)頻率分布直方圖,求重量超過(guò)克的產(chǎn)品數(shù)量;
(2)在上述抽取的件產(chǎn)品中任取件,設(shè)為重量超過(guò)克的產(chǎn)品數(shù)量,求的分布列;
(3)從該流水線上任取件產(chǎn)品,求恰有件產(chǎn)品的重量超過(guò)克的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知△ABC的三內(nèi)角A,B,C所對(duì)的邊分別是a,b,c,△ABC的面積S= 且sinA= .
(1)求sinB;
(2)若邊c=5,求△ABC的面積S.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】記集合A={(x,y)|x2+y2≤16}和集合B={(x,y)|x+y﹣4≤0,x≥0,y≥0}表示的平面區(qū)域分別為Ω1 , Ω2 , 若在區(qū)域Ω1內(nèi)任取一點(diǎn)M(x,y),則點(diǎn)M落在區(qū)域Ω2的概率為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為 (其中α為參數(shù)),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρ=4sinθ.
(1)若A,B為曲線C1 , C2的公共點(diǎn),求直線AB的斜率;
(2)若A,B分別為曲線C1 , C2上的動(dòng)點(diǎn),當(dāng)|AB|取最大值時(shí),求△AOB的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知甲、乙兩組數(shù)據(jù)如莖葉圖所示,若它們的中位數(shù)相同,平均數(shù)也相同,
(1)求m,n的取值.
(2)比較甲、乙兩組數(shù)據(jù)的穩(wěn)定性,并說(shuō)明理由.
注:方差公式s2= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直三棱柱ABC﹣A1B1C1中,∠BAC=90°,AB=AC=AA1=1,延長(zhǎng)A1C1至點(diǎn)P,使C1P=A1C1 , 連接AP交棱CC1于點(diǎn)D.以A1為坐標(biāo)原點(diǎn)建立空間直角坐標(biāo)系,如圖所示.
(1)寫(xiě)出A1、B、B1、C、D、P的坐標(biāo);
(2)求異面直線A1B與PB1所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知等差數(shù)列{an}中,a1=﹣2,公差d=3;數(shù)列{bn}中,Sn為其前n項(xiàng)和,滿(mǎn)足:2nSn+1=2n(n∈N+)
(Ⅰ)記An= ,求數(shù)列An的前n項(xiàng)和S;
(Ⅱ)求證:數(shù)列{bn}是等比數(shù)列;
(Ⅲ)設(shè)數(shù)列{cn}滿(mǎn)足cn=anbn , Tn為數(shù)列{cn}的前n項(xiàng)積,若數(shù)列{xn}滿(mǎn)足x1=c2﹣c1 , 且xn= ,求數(shù)列{xn}的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com