【題目】偶函數(shù)y=f(x)在區(qū)間[﹣4,0]上單調(diào)遞增,則有(
A.f(﹣1)>f( )>f(﹣π)
B.f( )>f(﹣1)>f(﹣π)
C.f(﹣π)>f(﹣1)>f(
D.f(﹣1)>f(﹣π)>f(

【答案】A
【解析】解:∵數(shù)y=f(x)是偶函數(shù),∴f( )=f(﹣ ),
∵﹣π<﹣ <﹣1,且函數(shù)y=f(x)在區(qū)間[﹣4,0]上單調(diào)遞增,
∴f(﹣1)>f(﹣ )>f(﹣π),
即f(﹣1)>f( )>f(﹣π),
故選:A.
【考點精析】關(guān)于本題考查的函數(shù)奇偶性的性質(zhì),需要了解在公共定義域內(nèi),偶函數(shù)的加減乘除仍為偶函數(shù);奇函數(shù)的加減仍為奇函數(shù);奇數(shù)個奇函數(shù)的乘除認為奇函數(shù);偶數(shù)個奇函數(shù)的乘除為偶函數(shù);一奇一偶的乘積是奇函數(shù);復合函數(shù)的奇偶性:一個為偶就為偶,兩個為奇才為奇才能得出正確答案.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)fx)=,gx)=1-ax2

(1)若函數(shù)fx)和gx)的圖象在x=1處的切線平行,求a的值;

(2)當x∈[0,1]時,不等式fx)≤gx)恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,斜三棱柱中,側(cè)面與側(cè)面都是菱形,

)求證: ;

(Ⅱ)若,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某同學在獨立完成課本上的例題:“求證: + <2 ”后,又進行了探究,發(fā)現(xiàn)下面的不等式均成立. + <2
+ <2
+ <2
+ <2 ,
+ ≤2
(1)請根據(jù)上述不等式歸納出一個一般性的不等式;(用字母表示)
(2)請用合適的方法證明你寫出的不等式成立.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列各組函數(shù)中,表示同一個函數(shù)的是(
A.f(x)= ,g(x)=x
B.f(x)=logaax(a>0,a≠1),g(x)=
C.f(x)=x,g(x)=
D.f(x)=lnx2 , g(x)=2lnx

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】定義在[﹣1,1]的函數(shù)f(x)滿足下列兩個條件:①任意的x∈[﹣1,1],都有f(﹣x)=﹣f(x);②任意的m,n∈[0,1],當m≠n,都有 <0,則不等式f(1﹣3x)<f(x﹣1)的解集是(
A.[0,
B.( ]
C.[﹣1,
D.[ ,1]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設f(x)=x3+ax2+bx+1的導函數(shù)f′(x)滿足f′(x)=2a,f′(2)=﹣b,
(1)求曲線y=f(x)在點(1,f(1))處的切線方程;
(2)設g(x)=f′(x)ex , 求函數(shù)g(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=
(1)當x≤0時,解不等式f(x)≥﹣1;
(2)寫出該函數(shù)的單調(diào)區(qū)間;
(3)若函數(shù)g(x)=f(x)﹣m恰有3個不同零點,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知p:關(guān)于x的不等式x2+2ax+4>0對一切 恒成立;q:函數(shù)f(x)=-(5-2a)x在R上是減函數(shù).若“p或q”為真,“p且q”為假,求實數(shù)a的取值范圍( )。
A.
B.B、
C.C、
D.a≥-2

查看答案和解析>>

同步練習冊答案