【題目】如圖,已知正方體,為棱的中點(diǎn),為棱的動(dòng)點(diǎn),設(shè)直線為平面與平面的交線,直線為平面與平面的交線,下列結(jié)論中錯(cuò)誤的是( )
A.平面B.平面與平面不垂直
C.平面與平面可能平行D.直線與直線可能不平行
【答案】D
【解析】
在正方體中,可得,根據(jù)線面平行的判定定理和性質(zhì)定理可得,可判斷選項(xiàng)A結(jié)論;分別取中點(diǎn),連,則為平面與平面的平面角,判斷是否為直角,即可判斷選項(xiàng)B的結(jié)論;若為中點(diǎn)時(shí),可證平面與平面平行,即可判斷選項(xiàng)C的結(jié)論;根據(jù)面面平行的性質(zhì)定理可得,即可判斷選項(xiàng)D的結(jié)論.
在正方體中,四邊形為矩形,
平面,平面,
平面,平面,
平面與平面,
選項(xiàng)A,平面,平面,
平面,選項(xiàng)A結(jié)論正確;
選項(xiàng)B,分別取中點(diǎn),連,
設(shè)正方體的邊長為,設(shè),
則,
,同理,
為平面與平面的平面角,
在中,,
,不是直角,
所以平面與平面不垂直,選項(xiàng)B結(jié)論正確;
選項(xiàng)C,若為中點(diǎn),取中點(diǎn)連,
則,又為棱的中點(diǎn),
,四邊形為平行四邊形,
面,平面,
平面,同理平面,
平面,
平面平面,選項(xiàng)C結(jié)論正確;
選項(xiàng)D,在正方體中,平面平面,
平面平面,平面平面
,選項(xiàng)D結(jié)論不正確.
故選:D.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在四棱錐S—ABCD中,SA⊥平面ABCD,底面ABCD為直角梯形,其中AB∥CD,∠ADC=90°,AD=AS=2,AB=1,CD=3,點(diǎn)E在棱CS上,且CE=λCS.
(1)若,證明:BE⊥CD;
(2)若,求點(diǎn)E到平面SBD的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的焦點(diǎn)為,準(zhǔn)線為,若點(diǎn)在上,點(diǎn)在上,且是周長為的正三角形.
(1)求的方程;
(2)過點(diǎn)的直線與拋物線相交于兩點(diǎn),拋物線在點(diǎn)處的切線與交于點(diǎn),求面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為調(diào)查某社區(qū)居民的業(yè)余生活狀況,研究這一社區(qū)居民在20:00-22:00時(shí)間段的休閑方式與性別的關(guān)系,隨機(jī)調(diào)查了該社區(qū)80人,得到下面的數(shù)據(jù)表:
休閑方式 性別 | 看電視 | 看書 | 合計(jì) |
男 | 10 | 50 | 60 |
女 | 10 | 10 | 20 |
合計(jì) | 20 | 60 | 80 |
(1)根據(jù)以上數(shù)據(jù),能否有的把握認(rèn)為“在20:00-22:00時(shí)間段的休閑方式與性別有關(guān)系”?
(2)將此樣本的頻率估計(jì)為總體的概率,隨機(jī)調(diào)查3名在該社區(qū)的男性,設(shè)調(diào)查的3人在這一時(shí)間段以看書為休閑方式的人數(shù)為隨機(jī)變量,求的數(shù)學(xué)期望和方差.
參考公式與數(shù)據(jù)對應(yīng),對應(yīng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將3本相同的小說,2本相同的詩集全部分給4名同學(xué),每名同學(xué)至少1本,則不同的分法有( )
A. 24種 B. 28種 C. 32種 D. 36種
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】江蘇省園博會(huì)有一中心廣場,南京園,常州園都在中心廣場的南偏西45°方向上,到中心廣場的距離分別為km,km;揚(yáng)州園在中心廣場的正東方向,到中心廣場的距離為km.規(guī)劃建設(shè)一條筆直的柏油路穿過中心廣場,且將南京園,常州園,揚(yáng)州園到柏油路的最短路徑鋪設(shè)成鵝卵石路(如圖(1)、(2)).已知鋪設(shè)每段鵝卵石路的費(fèi)用(萬元)與其長度的平方成正比,比例系數(shù)為2.設(shè)柏油路與正東方向的夾角,即圖(2)中∠COF為((0,)),鋪設(shè)三段鵝卵石路的總費(fèi)用為y(萬元).
(1)求南京園到柏油路的最短距離關(guān)于的表達(dá)式;
(2)求y的最小值及此時(shí)tan的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在底面是菱形的四棱錐中,,,,點(diǎn)在上,且.
(1)點(diǎn)在棱上且平面,求線段的長度;
(2)在(1)的條件下,求點(diǎn)到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)
(1)當(dāng)時(shí),求函數(shù)的極值.
(2)若函數(shù)在區(qū)間上有唯一的零點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com