【題目】設(shè)P1 , P2 , …Pn為平面α內(nèi)的n個(gè)點(diǎn),在平面α內(nèi)的所有點(diǎn)中,若點(diǎn)P到點(diǎn)P1 , P2 , …Pn的距離之和最小,則稱點(diǎn)P為P1 , P2 , …Pn的一個(gè)“中位點(diǎn)”,例如,線段AB上的任意點(diǎn)都是端點(diǎn)A,B的中位點(diǎn),現(xiàn)有下列命題:
①若三個(gè)點(diǎn)A、B、C共線,C在線段AB上,則C是A,B,C的中位點(diǎn);
②直角三角形斜邊的中點(diǎn)是該直角三角形三個(gè)頂點(diǎn)的中位點(diǎn);
③若四個(gè)點(diǎn)A、B、C、D共線,則它們的中位點(diǎn)存在且唯一;
④梯形對角線的交點(diǎn)是該梯形四個(gè)頂點(diǎn)的唯一中位點(diǎn).
其中的真命題是(寫出所有真命題的序號).

【答案】①④
【解析】解:①若三個(gè)點(diǎn)A、B、C共線,若C在線段AB上,則線段AB上任一點(diǎn)都為“中位點(diǎn)”,C也不例外,則C是A,B,C的中位點(diǎn),①正確;
②舉一個(gè)反例,如邊長為3,4,5的直角三角形ABC,此直角三角形的斜邊的中點(diǎn)到三個(gè)頂點(diǎn)的距離之和為5+2.5=7.5,而直角頂點(diǎn)到三個(gè)頂點(diǎn)的距離之和為7,所以直角三角形斜邊的中點(diǎn)不是該直角三角形三個(gè)頂點(diǎn)的中位點(diǎn),故②錯(cuò)誤;
③若四個(gè)點(diǎn)A、B、C、D共線,則它們的中位點(diǎn)是中間兩點(diǎn)連線段上的任意一個(gè)點(diǎn),故它們的中位點(diǎn)存在但不唯一,故③錯(cuò)誤;
④如圖,在梯形ABCD中,對角線的交點(diǎn)O,P是任意一點(diǎn),則根據(jù)三角形兩邊之和大于第三邊得
PA+PB+PC+PD≥AC+BD=OA+OB+OC+OD,所以梯形對角線的交點(diǎn)是該梯形四個(gè)頂點(diǎn)的唯一中位點(diǎn),故④正確.
所以答案是:①④.

【考點(diǎn)精析】通過靈活運(yùn)用命題的真假判斷與應(yīng)用,掌握兩個(gè)命題互為逆否命題,它們有相同的真假性;兩個(gè)命題為互逆命題或互否命題,它們的真假性沒有關(guān)系即可以解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,兩座建筑物的底部都在同一個(gè)水平面上,且均與水平面垂直,它們的高度分別是915,從建筑物的頂部看建筑物的視角

1的長度;

2在線段上取一點(diǎn)點(diǎn)與點(diǎn)不重合),從點(diǎn)看這兩座建筑物的視角分別為問點(diǎn)在何處時(shí),最小?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)fx)同時(shí)滿足:

①對于定義域上的任意x恒有fx+f(﹣x)=0

②對于定義域上的任意x1,x2,當(dāng)x1x2時(shí),恒有0,則稱函數(shù)fx)為理想函數(shù)

給出下列四個(gè)函數(shù)中①fx; fx; fx;④fx

能被稱為理想函數(shù)的有_______________(填相應(yīng)的序號).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx)對任意實(shí)數(shù)x,y恒有fx+y)=fx)+fy)且當(dāng)x>0,fx)<0.

給出下列四個(gè)結(jié)論:

f(0)=0;fx)為偶函數(shù);

fx)為R上減函數(shù);fx)為R上增函數(shù).

其中正確的結(jié)論是( 。

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等差數(shù)列中, , .

(1)求的通項(xiàng)公式;

(2)設(shè),求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在軸上,它的一個(gè)頂點(diǎn)恰好是拋物線的焦點(diǎn),它的離心率是雙曲線的離心率的倒數(shù).

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;

(Ⅱ)過橢圓的右焦點(diǎn)作直線交橢圓兩點(diǎn),交軸于點(diǎn),若,求證:為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】公元263年左右,我國數(shù)學(xué)家劉徽發(fā)現(xiàn)當(dāng)圓內(nèi)接正多邊形的邊數(shù)無限增加時(shí),多邊形的面積可無限接近圓的面積,并創(chuàng)立了“割圓術(shù)”,利用“割圓術(shù)”,劉徽得到了圓周率精確到小數(shù)點(diǎn)后兩位的近似值3.14,這就是著名的“徽率”,利用劉徽的“割圓術(shù)”思想設(shè)計(jì)的一個(gè)程序框圖,則輸出的值為( )

(參考數(shù)據(jù):

A. 12 B. 24 C. 48 D. 96

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某同學(xué)為研究函數(shù)的性質(zhì),構(gòu)造了如圖所示的兩個(gè)邊長為1的正方形ABCDBEFC,點(diǎn)P是邊BC上的一個(gè)動(dòng)點(diǎn),設(shè),則.請你參考這些信息,推知函數(shù)的圖象的對稱軸是______;函數(shù)的零點(diǎn)的個(gè)數(shù)是______

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】按照圖中的工序流程,從零件到成品最少要經(jīng)過_______道加工和檢驗(yàn)程序,導(dǎo)致廢品的產(chǎn)生有______種不同的情形

查看答案和解析>>

同步練習(xí)冊答案