某校要建一個(gè)面積為450平方米的矩形球場(chǎng),要求球場(chǎng)的一面利用舊墻,其他各面用鋼筋網(wǎng)圍成,且在矩形一邊的鋼筋網(wǎng)的正中間要留一個(gè)3米的進(jìn)出口(如圖).設(shè)矩形的長(zhǎng)為米,鋼筋網(wǎng)的總長(zhǎng)度為米.
(1)列出與的函數(shù)關(guān)系式,并寫出其定義域;
(2)問(wèn)矩形的長(zhǎng)與寬各為多少米時(shí),所用的鋼筋網(wǎng)的總長(zhǎng)度最?
(3)若由于地形限制,該球場(chǎng)的長(zhǎng)和寬都不能超過(guò)25米,問(wèn)矩形的長(zhǎng)與寬各為多少米時(shí),所用的鋼筋網(wǎng)的總長(zhǎng)度最?
(1)
(2)長(zhǎng)為30米,寬為15米,所用的鋼筋網(wǎng)的總長(zhǎng)度最小.
(3)長(zhǎng)為25米,寬為18米時(shí),所用的鋼筋網(wǎng)的總長(zhǎng)度最小
解析試題分析:(1)根據(jù)矩形的面積求出解析式,注意函數(shù)的定義域
(2)利用基本不等式求解,注意等號(hào)成立的條件
(3)利用函數(shù)的單調(diào)性求解(導(dǎo)數(shù)或單調(diào)性定義)
試題解析:(1)矩形的寬為:米
定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/27/5/1sqy04.png" style="vertical-align:middle;" />
注:定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/3f/6/twqkd4.png" style="vertical-align:middle;" />不扣分
(2)
當(dāng)且僅當(dāng) 即時(shí)取等號(hào),此時(shí)寬為:米
所以,長(zhǎng)為30米,寬為15米,所用的鋼筋網(wǎng)的總長(zhǎng)度最。
(3)法一:,
當(dāng)時(shí),
在上是單調(diào)遞減函數(shù)
當(dāng)時(shí),,此時(shí),長(zhǎng)為25米,寬為米
所以,長(zhǎng)為25米,寬為18米時(shí),所用的鋼筋網(wǎng)的總長(zhǎng)度最。
法二:設(shè),,
則
,
,
在上是單調(diào)遞減函數(shù)
當(dāng)時(shí),
此時(shí),長(zhǎng)為25米,寬為米
所以,長(zhǎng)為25米,寬為18米時(shí),所用的鋼筋網(wǎng)的總長(zhǎng)度最。
考點(diǎn):基本不等式的應(yīng)用,函數(shù)的單調(diào)性,最值
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)f(x)=3x-.
(1)若f(x)=2,求x的值;
(2)判斷x>0時(shí),f(x)的單調(diào)性;
(3)若3tf(2t)+mf(t)≥0對(duì)于t∈恒成立,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù),.
(1)求的取值范圍,使在閉區(qū)間上是單調(diào)函數(shù);
(2)當(dāng)時(shí),函數(shù)的最大值是關(guān)于的函數(shù).求;
(3)求實(shí)數(shù)的取值范圍,使得對(duì)任意的,恒有成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
某通訊公司需要在三角形地帶區(qū)域內(nèi)建造甲、乙兩種通信信號(hào)加強(qiáng)中轉(zhuǎn)站,甲中轉(zhuǎn)站建在區(qū)域內(nèi),乙中轉(zhuǎn)站建在區(qū)域內(nèi).分界線固定,且=百米,邊界線始終過(guò)點(diǎn),邊界線滿足.
設(shè)()百米,百米.
(1)試將表示成的函數(shù),并求出函數(shù)的解析式;
(2)當(dāng)取何值時(shí)?整個(gè)中轉(zhuǎn)站的占地面積最小,并求出其面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
對(duì)于函數(shù),若在定義域存在實(shí)數(shù),滿足,則稱為“局部奇函數(shù)”.
(1)已知二次函數(shù),試判斷是否為“局部奇函數(shù)”?并說(shuō)明理由;
(2)設(shè)是定義在上的“局部奇函數(shù)”,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知的圖象關(guān)于坐標(biāo)原點(diǎn)對(duì)稱。
(1)求的值,并求出函數(shù)的零點(diǎn);
(2)若函數(shù)在[0,1]內(nèi)存在零點(diǎn),求實(shí)數(shù)b的取值范圍;
(3)設(shè),已知的反函數(shù)=,若不等式在上恒成立,求滿足條件的最小整數(shù)k的值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù).
(1)若對(duì)于區(qū)間內(nèi)的任意,總有成立,求實(shí)數(shù)的取值范圍;
(2)若函數(shù)在區(qū)間內(nèi)有兩個(gè)不同的零點(diǎn),求:
①實(shí)數(shù)的取值范圍; ②的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
經(jīng)市場(chǎng)調(diào)查,某種商品在過(guò)去50天的銷量和價(jià)格均為銷售時(shí)間t(天)的函數(shù),且銷售量近似地滿足f(t)=-2t+200(1≤t≤50,t∈N),前30天價(jià)格為g(t)=t+30(1≤t≤30,t∈N),后20天價(jià)格為g(t)=45(31≤t≤50,t∈N).
(1)寫出該種商品的日銷售額S與時(shí)間t的函數(shù)關(guān)系式;
(2)求日銷售額S的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)f(x)=x2-4,設(shè)曲線y=f(x)在點(diǎn)(xn,f(xn))
處的切線與x軸的交點(diǎn)為(xn+1,0)(n∈N+),其中x1為正實(shí)數(shù).
(1)用xn表示xn+1;
(2)求證:對(duì)一切正整數(shù)n,xn+1≤xn的充要條件是x1≥2;
(3)若x1=4,記an=lg ,證明數(shù)列{an}成等比數(shù)列,并求數(shù)列{xn}的通項(xiàng)公式.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com